aboutsummaryrefslogtreecommitdiff
path: root/board/sixnet/sixnet.c
blob: 867589f918e36da26cd8bd7b81ac89d1689e744c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
/*
 * (C) Copyright 2001, 2002
 * Dave Ellis, SIXNET, dge@sixnetio.com.
 *  Based on code by:
 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
 * and other contributors to U-Boot. See file CREDITS for list
 * of people who contributed to this  project.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of
 * the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 * MA 02111-1307 USA
 */

#include <common.h>
#include <config.h>
#include <jffs2/jffs2.h>
#include <mpc8xx.h>
#include <net.h>	/* for eth_init() */
#include <rtc.h>
#include "sixnet.h"
#ifdef CONFIG_SHOW_BOOT_PROGRESS
# include <status_led.h>
#endif

#if (CONFIG_COMMANDS & CFG_CMD_NAND)
#include <linux/mtd/nand.h>
extern struct nand_chip nand_dev_desc[CFG_MAX_NAND_DEVICE];
#endif

#define ORMASK(size) ((-size) & OR_AM_MSK)

static long ram_size(ulong *, long);

/* ------------------------------------------------------------------------- */

#ifdef CONFIG_SHOW_BOOT_PROGRESS
void show_boot_progress (int status)
{
#if defined(CONFIG_STATUS_LED)
# if defined(STATUS_LED_BOOT)
	if (status == 15) {
		/* ready to transfer to kernel, make sure LED is proper state */
		status_led_set(STATUS_LED_BOOT, CONFIG_BOOT_LED_STATE);
	}
# endif /* STATUS_LED_BOOT */
#endif /* CONFIG_STATUS_LED */
}
#endif

/* ------------------------------------------------------------------------- */

/*
 * Check Board Identity:
 * returns 0 if recognized, -1 if unknown
 */

int checkboard (void)
{
	puts ("Board: SIXNET SXNI855T\n");
	return 0;
}

/* ------------------------------------------------------------------------- */

#if (CONFIG_COMMANDS & CFG_CMD_PCMCIA)
#error "SXNI855T has no PCMCIA port"
#endif	/* CFG_CMD_PCMCIA */

/* ------------------------------------------------------------------------- */

#define _not_used_ 0xffffffff

/* UPMB table for dual UART. */

/* this table is for 50MHz operation, it should work at all lower speeds */
const uint duart_table[] =
{
	/* single read. (offset 0 in upm RAM) */
	0xfffffc04, 0x0ffffc04, 0x0ff3fc04, 0x0ff3fc04,
	0x0ff3fc00, 0x0ff3fc04, 0xfffffc04, 0xfffffc05,

	/* burst read. (offset 8 in upm RAM) */
	_not_used_, _not_used_, _not_used_, _not_used_,
	_not_used_, _not_used_, _not_used_, _not_used_,
	_not_used_, _not_used_, _not_used_, _not_used_,
	_not_used_, _not_used_, _not_used_, _not_used_,

	/* single write. (offset 18 in upm RAM) */
	0xfffffc04, 0x0ffffc04, 0x00fffc04, 0x00fffc04,
	0x00fffc04, 0x00fffc00, 0xfffffc04, 0xfffffc05,

	/* burst write. (offset 20 in upm RAM) */
	_not_used_, _not_used_, _not_used_, _not_used_,
	_not_used_, _not_used_, _not_used_, _not_used_,
	_not_used_, _not_used_, _not_used_, _not_used_,
	_not_used_, _not_used_, _not_used_, _not_used_,

	/* refresh. (offset 30 in upm RAM) */
	_not_used_, _not_used_, _not_used_, _not_used_,
	_not_used_, _not_used_, _not_used_, _not_used_,
	_not_used_, _not_used_, _not_used_, _not_used_,

	/* exception. (offset 3c in upm RAM) */
	_not_used_, _not_used_, _not_used_, _not_used_,
};

/* Load FPGA very early in boot sequence, since it must be
 * loaded before the 16C2550 serial channels can be used as
 * console channels.
 *
 * Note: Much of the configuration is not complete. The
 *       stack is in DPRAM since SDRAM has not been initialized,
 *       so the stack must be kept small. Global variables
 *       are still in FLASH, so they cannot be written.
 *	 Only the FLASH, DPRAM, immap and FPGA can be addressed,
 *       the other chip selects may not have been initialized.
 *       The clocks have been initialized, so udelay() can be
 *       used.
 */
#define FPGA_DONE	0x0080	/* PA8, input, high when FPGA load complete */
#define FPGA_PROGRAM_L	0x0040	/* PA9, output, low to reset, high to start */
#define FPGA_INIT_L	0x0020	/* PA10, input, low indicates not ready	*/
#define fpga (*(volatile unsigned char *)(CFG_FPGA_PROG))	/* FPGA port */

int board_postclk_init (void)
{

	/* the data to load to the XCSxxXL FPGA */
	static const unsigned char fpgadata[] = {
# include "fpgadata.c"
	};

	volatile immap_t     *immap = (immap_t *)CFG_IMMR;
	volatile memctl8xx_t *memctl = &immap->im_memctl;
#define porta (immap->im_ioport.iop_padat)
	const unsigned char* pdata;

	/* /INITFPGA and DONEFPGA signals are inputs */
	immap->im_ioport.iop_padir &= ~(FPGA_INIT_L | FPGA_DONE);

	/* Force output pin to begin at 0, /PROGRAM asserted (0) resets FPGA */
	porta &= ~FPGA_PROGRAM_L;

	/* Set FPGA as an output */
	immap->im_ioport.iop_padir |= FPGA_PROGRAM_L;

	/* delay a little to make sure FPGA sees it, really
	 * only need less than a microsecond.
	 */
	udelay(10);

	/* unassert /PROGRAM */
	porta |= FPGA_PROGRAM_L;

	/* delay while FPGA does last erase, indicated by
	 * /INITFPGA going high. This should happen within a
	 * few milliseconds.
	 */
	/* ### FIXME - a timeout check would be good, maybe flash
	 * the status LED to indicate the error?
	 */
	while ((porta & FPGA_INIT_L) == 0)
		; /* waiting */

	/* write program data to FPGA at the programming address
	 * so extra /CS1 strobes at end of configuration don't actually
	 * write to any registers.
	 */
	fpga = 0xff;		/* first write is ignored	*/
	fpga = 0xff;		/* fill byte			*/
	fpga = 0xff;		/* fill byte			*/
	fpga = 0x4f;		/* preamble code		*/
	fpga = 0x80; fpga = 0xaf; fpga = 0x9b; /* length (ignored) */
	fpga = 0x4b;		/* field check code */

	pdata = fpgadata;
	/* while no error write out each of the 28 byte frames */
	while ((porta & (FPGA_INIT_L | FPGA_DONE)) == FPGA_INIT_L
	       && pdata < fpgadata + sizeof(fpgadata)) {

		fpga = 0x4f;	/* preamble code */

		/* 21 bytes of data in a frame */
		fpga = *(pdata++); fpga = *(pdata++);
		fpga = *(pdata++); fpga = *(pdata++);
		fpga = *(pdata++); fpga = *(pdata++);
		fpga = *(pdata++); fpga = *(pdata++);
		fpga = *(pdata++); fpga = *(pdata++);
		fpga = *(pdata++); fpga = *(pdata++);
		fpga = *(pdata++); fpga = *(pdata++);
		fpga = *(pdata++); fpga = *(pdata++);
		fpga = *(pdata++); fpga = *(pdata++);
		fpga = *(pdata++); fpga = *(pdata++);
		fpga = *(pdata++);

		fpga = 0x4b;	/* field check code		*/
		fpga = 0xff;	/* extended write cycle		*/
		fpga = 0x4b;	/* extended write cycle
				 * (actually 0x4b from bitgen.exe)
				 */
		fpga = 0xff;	/* extended write cycle		*/
		fpga = 0xff;	/* extended write cycle		*/
		fpga = 0xff;	/* extended write cycle		*/
	}

	fpga = 0xff;		/* startup byte			*/
	fpga = 0xff;		/* startup byte			*/
	fpga = 0xff;		/* startup byte			*/
	fpga = 0xff;		/* startup byte			*/

#if 0 /* ### FIXME */
	/* If didn't load all the data or FPGA_DONE is low the load failed.
	 * Maybe someday stop here and flash the status LED? The console
	 * is not configured, so can't print an error message. Can't write
	 * global variables to set a flag (except gd?).
	 * For now it must work.
	 */
#endif

	/* Now that the FPGA is loaded, set up the Dual UART chip
	 * selects. Must be done here since it may be used as the console.
	 */
	upmconfig(UPMB, (uint *)duart_table, sizeof(duart_table)/sizeof(uint));

	memctl->memc_mbmr = DUART_MBMR;
	memctl->memc_or5 = DUART_OR_VALUE;
	memctl->memc_br5 = DUART_BR5_VALUE;
	memctl->memc_or6 = DUART_OR_VALUE;
	memctl->memc_br6 = DUART_BR6_VALUE;

	return (0);
}

/* ------------------------------------------------------------------------- */

/* base address for SRAM, assume 32-bit port,  valid */
#define NVRAM_BR_VALUE   (CFG_SRAM_BASE | BR_PS_32 | BR_V)

/*  up to 64MB - will be adjusted for actual size */
#define NVRAM_OR_PRELIM  (ORMASK(CFG_SRAM_SIZE) \
	| OR_CSNT_SAM | OR_ACS_DIV4 | OR_BI | OR_SCY_5_CLK | OR_EHTR)
/*
 * Miscellaneous platform dependent initializations after running in RAM.
 */

int misc_init_r (void)
{
	DECLARE_GLOBAL_DATA_PTR;

	volatile immap_t     *immap = (immap_t *)CFG_IMMR;
	volatile memctl8xx_t *memctl = &immap->im_memctl;
	char* s;
	char* e;
	int reg;
	bd_t *bd = gd->bd;

	memctl->memc_or2 = NVRAM_OR_PRELIM;
	memctl->memc_br2 = NVRAM_BR_VALUE;

	/* Is there any SRAM? Is it 16 or 32 bits wide? */

	/* First look for 32-bit SRAM */
	bd->bi_sramsize = ram_size((ulong*)CFG_SRAM_BASE, CFG_SRAM_SIZE);

	if (bd->bi_sramsize == 0) {
	    /* no 32-bit SRAM, but there could be 16-bit SRAM since
	     * it would report size 0 when configured for 32-bit bus.
	     * Try again with a 16-bit bus.
	     */
	    memctl->memc_br2 |= BR_PS_16;
	    bd->bi_sramsize = ram_size((ulong*)CFG_SRAM_BASE, CFG_SRAM_SIZE);
	}

	if (bd->bi_sramsize == 0) {
	    memctl->memc_br2 = 0;	/* disable select since nothing there */
	}
	else {
	    /* adjust or2 for actual size of SRAM */
	    memctl->memc_or2 |= ORMASK(bd->bi_sramsize);
	    bd->bi_sramstart = CFG_SRAM_BASE;
	    printf("SRAM:  %lu KB\n", bd->bi_sramsize >> 10);
	}


	/* set standard MPC8xx clock so kernel will see the time
	 * even if it doesn't have a DS1306 clock driver.
	 * This helps with experimenting with standard kernels.
	 */
	{
	    ulong tim;
	    struct rtc_time tmp;

	    rtc_get(&tmp);	/* get time from DS1306 RTC */

	    /* convert to seconds since 1970 */
	    tim = mktime(tmp.tm_year, tmp.tm_mon, tmp.tm_mday,
			 tmp.tm_hour, tmp.tm_min, tmp.tm_sec);

	    immap->im_sitk.sitk_rtck = KAPWR_KEY;
	    immap->im_sit.sit_rtc = tim;
	}

	/* set up ethernet address for SCC ethernet. If eth1addr
	 * is present it gets a unique address, otherwise it
	 * shares the FEC address.
	 */
	s = getenv("eth1addr");
	if (s == NULL)
		s = getenv("ethaddr");
	for (reg=0; reg<6; ++reg) {
		bd->bi_enet1addr[reg] = s ? simple_strtoul(s, &e, 16) : 0;
		if (s)
			s = (*e) ? e+1 : e;
	}

	return (0);
}

#if (CONFIG_COMMANDS & CFG_CMD_NAND)
void nand_init(void)
{
	unsigned long totlen = nand_probe(CFG_DFLASH_BASE);

	printf ("%4lu MB\n", totlen >> 20);
}
#endif

/* ------------------------------------------------------------------------- */

/*
 * Check memory range for valid RAM. A simple memory test determines
 * the actually available RAM size between addresses `base' and
 * `base + maxsize'.
 *
 * The memory size MUST be a power of 2 for this to work.
 *
 * The only memory modified is 8 bytes at offset 0. This is important
 * since for the SRAM this location is reserved for autosizing, so if
 * it is modified and the board is reset before ram_size() completes
 * no damage is  done. Normally even the memory at 0 is preserved. The
 * higher SRAM addresses may contain battery backed RAM disk data which
 * must never be corrupted.
 */

static long ram_size(ulong *base, long maxsize)
{
    volatile long	*test_addr;
    volatile ulong	*base_addr = base;
    ulong		ofs;		/* byte offset from base_addr */
    ulong		save;		/* to make test non-destructive */
    ulong		save2;		/* to make test non-destructive */
    long		ramsize = -1;	/* size not determined yet */

    save = *base_addr;		/* save value at 0 so can restore */
    save2 = *(base_addr+1);	/* save value at 4 so can restore */

    /* is any SRAM present? */
    *base_addr = 0x5555aaaa;

    /* It is important to drive the data bus with different data so
     * it doesn't remember the value and look like RAM that isn't there.
     */
    *(base_addr + 1) = 0xaaaa5555;	/* use write to modify data bus */

    if (*base_addr != 0x5555aaaa)
	ramsize = 0;		/* no RAM present, or defective */
    else {
	*base_addr = 0xaaaa5555;
	*(base_addr + 1) = 0x5555aaaa;	/* use write to modify data bus */
	if (*base_addr != 0xaaaa5555)
	    ramsize = 0;	/* no RAM present, or defective */
    }

    /* now size it if any is present */
    for (ofs = 4; ofs < maxsize && ramsize < 0; ofs <<= 1) {
	test_addr = (long*)((long)base_addr + ofs);	/* location to test */

	*base_addr = ~*test_addr;
	if (*base_addr == *test_addr)
	    ramsize = ofs;	/* wrapped back to 0, so this is the size */
    }

    *base_addr = save;		/* restore value at 0 */
    *(base_addr+1) = save2;	/* restore value at 4 */
    return (ramsize);
}

/* ------------------------------------------------------------------------- */
/* sdram table based on the FADS manual                                      */
/* for chip MB811171622A-100                                                 */

/* this table is for 50MHz operation, it should work at all lower speeds */

const uint sdram_table[] =
{
	/* single read. (offset 0 in upm RAM) */
	0x1f07fc04, 0xeeaefc04, 0x11adfc04, 0xefbbbc00,
	0x1ff77c47,

	/* precharge and Mode Register Set initialization (offset 5).
	 * This is also entered at offset 6 to do Mode Register Set
	 * without the precharge.
	 */
	0x1ff77c34, 0xefeabc34, 0x1fb57c35,

	/* burst read. (offset 8 in upm RAM) */
	0x1f07fc04, 0xeeaefc04, 0x10adfc04, 0xf0affc00,
	0xf0affc00, 0xf1affc00, 0xefbbbc00, 0x1ff77c47,
	_not_used_, _not_used_, _not_used_, _not_used_,
	_not_used_, _not_used_, _not_used_, _not_used_,

	/* single write. (offset 18 in upm RAM) */
	/* FADS had 0x1f27fc04, ...
	 * but most other boards have 0x1f07fc04, which
	 * sets GPL0 from A11MPC to 0 1/4 clock earlier,
	 * like the single read.
	 * This seems better so I am going with the change.
	 */
	0x1f07fc04, 0xeeaebc00, 0x01b93c04, 0x1ff77c47,
	_not_used_, _not_used_, _not_used_, _not_used_,

	/* burst write. (offset 20 in upm RAM) */
	0x1f07fc04, 0xeeaebc00, 0x10ad7c00, 0xf0affc00,
	0xf0affc00, 0xe1bbbc04, 0x1ff77c47, _not_used_,
	_not_used_, _not_used_, _not_used_, _not_used_,
	_not_used_, _not_used_, _not_used_, _not_used_,

	/* refresh. (offset 30 in upm RAM) */
	0x1ff5fc84, 0xfffffc04, 0xfffffc04, 0xfffffc04,
	0xfffffc84, 0xfffffc07, _not_used_, _not_used_,
	_not_used_, _not_used_, _not_used_, _not_used_,

	/* exception. (offset 3c in upm RAM) */
	0x7ffffc07, _not_used_, _not_used_, _not_used_ };

/* ------------------------------------------------------------------------- */

#define	SDRAM_MAX_SIZE		0x10000000	/* max 256 MB SDRAM */

/* precharge and set Mode Register */
#define SDRAM_MCR_PRE    (MCR_OP_RUN | MCR_UPM_A |	/* select UPM     */ \
			  MCR_MB_CS3 |			/* chip select    */ \
			  MCR_MLCF(1) | MCR_MAD(5))	/* 1 time at 0x05 */

/* set Mode Register, no precharge */
#define SDRAM_MCR_MRS    (MCR_OP_RUN | MCR_UPM_A |	/* select UPM     */ \
			  MCR_MB_CS3 |			/* chip select    */ \
			  MCR_MLCF(1) | MCR_MAD(6))	/* 1 time at 0x06 */

/* runs refresh loop twice so get 8 refresh cycles */
#define SDRAM_MCR_REFR   (MCR_OP_RUN | MCR_UPM_A |	/* select UPM     */ \
			  MCR_MB_CS3 |			/* chip select    */ \
			  MCR_MLCF(2) | MCR_MAD(0x30))	/* twice at 0x30  */

/* MAMR values work in either mamr or mbmr */
#define SDRAM_MAMR_BASE  /* refresh at 50MHz */				  \
			 ((195 << MAMR_PTA_SHIFT) | MAMR_PTAE		  \
			 | MAMR_DSA_1_CYCL	/* 1 cycle disable */	  \
			 | MAMR_RLFA_1X		/* Read loop 1 time */	  \
			 | MAMR_WLFA_1X		/* Write loop 1 time */	  \
			 | MAMR_TLFA_4X)	/* Timer loop 4 times */
/* 8 column SDRAM */
#define SDRAM_MAMR_8COL	(SDRAM_MAMR_BASE				  \
			 | MAMR_AMA_TYPE_0	/* Address MUX 0 */	  \
			 | MAMR_G0CLA_A11)	/* GPL0 A11[MPC] */

/* 9 column SDRAM */
#define SDRAM_MAMR_9COL	(SDRAM_MAMR_BASE				  \
			 | MAMR_AMA_TYPE_1	/* Address MUX 1 */	  \
			 | MAMR_G0CLA_A10)	/* GPL0 A10[MPC] */

/* base address 0, 32-bit port, SDRAM UPM, valid */
#define SDRAM_BR_VALUE   (BR_PS_32 | BR_MS_UPMA | BR_V)

/*  up to 256MB, SAM, G5LS - will be adjusted for actual size */
#define SDRAM_OR_PRELIM  (ORMASK(SDRAM_MAX_SIZE) | OR_CSNT_SAM | OR_G5LS)

/* This is the Mode Select Register value for the SDRAM.
 * Burst length: 4
 * Burst Type: sequential
 * CAS Latency: 2
 * Write Burst Length: burst
 */
#define SDRAM_MODE   0x22	/* CAS latency 2, burst length 4 */

/* ------------------------------------------------------------------------- */

long int initdram(int board_type)
{
	volatile immap_t     *immap = (immap_t *)CFG_IMMR;
	volatile memctl8xx_t *memctl = &immap->im_memctl;
	uint size_sdram = 0;
	uint size_sdram9 = 0;
	uint base = 0;		/* SDRAM must start at 0 */
	int i;

	upmconfig(UPMA, (uint *)sdram_table, sizeof(sdram_table)/sizeof(uint));

	/* Configure the refresh (mostly).  This needs to be
	 * based upon processor clock speed and optimized to provide
	 * the highest level of performance.
	 *
	 * Preliminary prescaler for refresh.
	 * This value is selected for four cycles in 31.2 us,
	 * which gives 8192 cycles in 64 milliseconds.
	 * This may be too fast, but works for any memory.
	 * It is adjusted to 4096 cycles in 64 milliseconds if
	 * possible once we know what memory we have.
	 *
	 * We have to be careful changing UPM registers after we
	 * ask it to run these commands.
	 *
	 * PTA - periodic timer period for our design is
	 *       50 MHz x 31.2us
	 *       ---------------  = 195
	 *       1 x 8 x 1
	 *
	 *    50MHz clock
	 *    31.2us refresh interval
	 *    SCCR[DFBRG] 0
	 *    PTP divide by 8
	 *    1 chip select
	 */
	memctl->memc_mptpr = MPTPR_PTP_DIV8;	/* 0x0800 */
	memctl->memc_mamr = SDRAM_MAMR_8COL & (~MAMR_PTAE); /* no refresh yet */

	/* The SDRAM Mode Register value is shifted left 2 bits since
	 * A30 and A31 don't connect to the SDRAM for 32-bit wide memory.
	 */
	memctl->memc_mar = SDRAM_MODE << 2;	/* MRS code */
	udelay(200);		/* SDRAM needs 200uS before set it up */

	/* Now run the precharge/nop/mrs commands. */
	memctl->memc_mcr = SDRAM_MCR_PRE;
	udelay(2);

	/* Run 8 refresh cycles (2 sets of 4) */
	memctl->memc_mcr = SDRAM_MCR_REFR;	/* run refresh twice */
	udelay(2);

	/* some brands want Mode Register set after the refresh
	 * cycles. This shouldn't hurt anything for the brands
	 * that were happy with the first time we set it.
	 */
	memctl->memc_mcr = SDRAM_MCR_MRS;
	udelay(2);

	memctl->memc_mamr = SDRAM_MAMR_8COL;	/* enable refresh */
	memctl->memc_or3 = SDRAM_OR_PRELIM;
	memctl->memc_br3 = SDRAM_BR_VALUE + base;

	/* Some brands need at least 10 DRAM accesses to stabilize.
	 * It wont hurt the brands that don't.
	 */
	for (i=0; i<10; ++i) {
		volatile ulong *addr = (volatile ulong *)base;
		ulong val;

		val = *(addr + i);
		*(addr + i) = val;
	}

	/* Check SDRAM memory Size in 8 column mode.
	 * For a 9 column memory we will get half the actual size.
	 */
	size_sdram = ram_size((ulong *)0, SDRAM_MAX_SIZE);

	/* Check SDRAM memory Size in 9 column mode.
	 * For an 8 column memory we will see at most 4 megabytes.
	 */
	memctl->memc_mamr = SDRAM_MAMR_9COL;
	size_sdram9 = ram_size((ulong *)0, SDRAM_MAX_SIZE);

	if (size_sdram < size_sdram9)	/* leave configuration at 9 columns */
		size_sdram = size_sdram9;
	else				/* go back to 8 columns */
		memctl->memc_mamr = SDRAM_MAMR_8COL;

	/* adjust or3 for actual size of SDRAM
	 */
	memctl->memc_or3 |= ORMASK(size_sdram);

	/* Adjust refresh rate depending on SDRAM type.
	 * For types > 128 MBit (32 Mbyte for 2 x16 devices) leave
	 * it at the current (fast) rate.
	 * For 16, 64 and 128 MBit half the rate will do.
	 */
	if (size_sdram <= 32 * 1024 * 1024)
		memctl->memc_mptpr = MPTPR_PTP_DIV16;	/* 0x0400 */

	return (size_sdram);
}