/* * Freescale i.MX28 SSP MMC driver * * Copyright (C) 2011 Marek Vasut * on behalf of DENX Software Engineering GmbH * * Based on code from LTIB: * (C) Copyright 2008-2010 Freescale Semiconductor, Inc. * Terry Lv * * Copyright 2007, Freescale Semiconductor, Inc * Andy Fleming * * Based vaguely on the pxa mmc code: * (C) Copyright 2003 * Kyle Harris, Nexus Technologies, Inc. kharris@nexus-tech.net * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #include #include struct mxsmmc_priv { int id; struct mxs_ssp_regs *regs; uint32_t clkseq_bypass; uint32_t *clkctrl_ssp; uint32_t buswidth; int (*mmc_is_wp)(int); struct mxs_dma_desc *desc; }; #define MXSMMC_MAX_TIMEOUT 10000 #define MXSMMC_SMALL_TRANSFER 512 static int mxsmmc_send_cmd_pio(struct mxsmmc_priv *priv, struct mmc_data *data) { struct mxs_ssp_regs *ssp_regs = priv->regs; uint32_t *data_ptr; int timeout = MXSMMC_MAX_TIMEOUT; uint32_t reg; uint32_t data_count = data->blocksize * data->blocks; if (data->flags & MMC_DATA_READ) { data_ptr = (uint32_t *)data->dest; while (data_count && --timeout) { reg = readl(&ssp_regs->hw_ssp_status); if (!(reg & SSP_STATUS_FIFO_EMPTY)) { *data_ptr++ = readl(&ssp_regs->hw_ssp_data); data_count -= 4; timeout = MXSMMC_MAX_TIMEOUT; } else udelay(1000); } } else { data_ptr = (uint32_t *)data->src; timeout *= 100; while (data_count && --timeout) { reg = readl(&ssp_regs->hw_ssp_status); if (!(reg & SSP_STATUS_FIFO_FULL)) { writel(*data_ptr++, &ssp_regs->hw_ssp_data); data_count -= 4; timeout = MXSMMC_MAX_TIMEOUT; } else udelay(1000); } } return timeout ? 0 : COMM_ERR; } static int mxsmmc_send_cmd_dma(struct mxsmmc_priv *priv, struct mmc_data *data) { uint32_t data_count = data->blocksize * data->blocks; uint32_t cache_data_count = roundup(data_count, ARCH_DMA_MINALIGN); int dmach; struct mxs_dma_desc *desc = priv->desc; void *addr, *backup; uint8_t flags; memset(desc, 0, sizeof(struct mxs_dma_desc)); desc->address = (dma_addr_t)desc; if (data->flags & MMC_DATA_READ) { priv->desc->cmd.data = MXS_DMA_DESC_COMMAND_DMA_WRITE; addr = data->dest; flags = GEN_BB_WRITE; } else { priv->desc->cmd.data = MXS_DMA_DESC_COMMAND_DMA_READ; addr = (void *)data->src; flags = GEN_BB_READ; } bounce_buffer_start(&addr, data_count, &backup, flags); priv->desc->cmd.address = (dma_addr_t)addr; if (data->flags & MMC_DATA_WRITE) { /* Flush data to DRAM so DMA can pick them up */ flush_dcache_range((uint32_t)addr, (uint32_t)(addr) + cache_data_count); } /* Invalidate the area, so no writeback into the RAM races with DMA */ invalidate_dcache_range((uint32_t)priv->desc->cmd.address, (uint32_t)(priv->desc->cmd.address + cache_data_count)); priv->desc->cmd.data |= MXS_DMA_DESC_IRQ | MXS_DMA_DESC_DEC_SEM | (data_count << MXS_DMA_DESC_BYTES_OFFSET); dmach = MXS_DMA_CHANNEL_AHB_APBH_SSP0 + priv->id; mxs_dma_desc_append(dmach, priv->desc); if (mxs_dma_go(dmach)) { bounce_buffer_stop(&addr, data_count, &backup, flags); return COMM_ERR; } /* The data arrived into DRAM, invalidate cache over them */ if (data->flags & MMC_DATA_READ) { invalidate_dcache_range((uint32_t)addr, (uint32_t)(addr) + cache_data_count); } bounce_buffer_stop(&addr, data_count, &backup, flags); return 0; } /* * Sends a command out on the bus. Takes the mmc pointer, * a command pointer, and an optional data pointer. */ static int mxsmmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd, struct mmc_data *data) { struct mxsmmc_priv *priv = (struct mxsmmc_priv *)mmc->priv; struct mxs_ssp_regs *ssp_regs = priv->regs; uint32_t reg; int timeout; uint32_t ctrl0; int ret; debug("MMC%d: CMD%d\n", mmc->block_dev.dev, cmd->cmdidx); /* Check bus busy */ timeout = MXSMMC_MAX_TIMEOUT; while (--timeout) { udelay(1000); reg = readl(&ssp_regs->hw_ssp_status); if (!(reg & (SSP_STATUS_BUSY | SSP_STATUS_DATA_BUSY | SSP_STATUS_CMD_BUSY))) { break; } } if (!timeout) { printf("MMC%d: Bus busy timeout!\n", mmc->block_dev.dev); return TIMEOUT; } /* See if card is present */ if (readl(&ssp_regs->hw_ssp_status) & SSP_STATUS_CARD_DETECT) { printf("MMC%d: No card detected!\n", mmc->block_dev.dev); return NO_CARD_ERR; } /* Start building CTRL0 contents */ ctrl0 = priv->buswidth; /* Set up command */ if (!(cmd->resp_type & MMC_RSP_CRC)) ctrl0 |= SSP_CTRL0_IGNORE_CRC; if (cmd->resp_type & MMC_RSP_PRESENT) /* Need to get response */ ctrl0 |= SSP_CTRL0_GET_RESP; if (cmd->resp_type & MMC_RSP_136) /* It's a 136 bits response */ ctrl0 |= SSP_CTRL0_LONG_RESP; if (data && (data->blocksize * data->blocks < MXSMMC_SMALL_TRANSFER)) writel(SSP_CTRL1_DMA_ENABLE, &ssp_regs->hw_ssp_ctrl1_clr); else writel(SSP_CTRL1_DMA_ENABLE, &ssp_regs->hw_ssp_ctrl1_set); /* Command index */ reg = readl(&ssp_regs->hw_ssp_cmd0); reg &= ~(SSP_CMD0_CMD_MASK | SSP_CMD0_APPEND_8CYC); reg |= cmd->cmdidx << SSP_CMD0_CMD_OFFSET; if (cmd->cmdidx == MMC_CMD_STOP_TRANSMISSION) reg |= SSP_CMD0_APPEND_8CYC; writel(reg, &ssp_regs->hw_ssp_cmd0); /* Command argument */ writel(cmd->cmdarg, &ssp_regs->hw_ssp_cmd1); /* Set up data */ if (data) { /* READ or WRITE */ if (data->flags & MMC_DATA_READ) { ctrl0 |= SSP_CTRL0_READ; } else if (priv->mmc_is_wp && priv->mmc_is_wp(mmc->block_dev.dev)) { printf("MMC%d: Can not write a locked card!\n", mmc->block_dev.dev); return UNUSABLE_ERR; } ctrl0 |= SSP_CTRL0_DATA_XFER; reg = ((data->blocks - 1) << SSP_BLOCK_SIZE_BLOCK_COUNT_OFFSET) | ((ffs(data->blocksize) - 1) << SSP_BLOCK_SIZE_BLOCK_SIZE_OFFSET); writel(reg, &ssp_regs->hw_ssp_block_size); reg = data->blocksize * data->blocks; writel(reg, &ssp_regs->hw_ssp_xfer_size); } /* Kick off the command */ ctrl0 |= SSP_CTRL0_WAIT_FOR_IRQ | SSP_CTRL0_ENABLE | SSP_CTRL0_RUN; writel(ctrl0, &ssp_regs->hw_ssp_ctrl0); /* Wait for the command to complete */ timeout = MXSMMC_MAX_TIMEOUT; while (--timeout) { udelay(1000); reg = readl(&ssp_regs->hw_ssp_status); if (!(reg & SSP_STATUS_CMD_BUSY)) break; } if (!timeout) { printf("MMC%d: Command %d busy\n", mmc->block_dev.dev, cmd->cmdidx); return TIMEOUT; } /* Check command timeout */ if (reg & SSP_STATUS_RESP_TIMEOUT) { printf("MMC%d: Command %d timeout (status 0x%08x)\n", mmc->block_dev.dev, cmd->cmdidx, reg); return TIMEOUT; } /* Check command errors */ if (reg & (SSP_STATUS_RESP_CRC_ERR | SSP_STATUS_RESP_ERR)) { printf("MMC%d: Command %d error (status 0x%08x)!\n", mmc->block_dev.dev, cmd->cmdidx, reg); return COMM_ERR; } /* Copy response to response buffer */ if (cmd->resp_type & MMC_RSP_136) { cmd->response[3] = readl(&ssp_regs->hw_ssp_sdresp0); cmd->response[2] = readl(&ssp_regs->hw_ssp_sdresp1); cmd->response[1] = readl(&ssp_regs->hw_ssp_sdresp2); cmd->response[0] = readl(&ssp_regs->hw_ssp_sdresp3); } else cmd->response[0] = readl(&ssp_regs->hw_ssp_sdresp0); /* Return if no data to process */ if (!data) return 0; if (data->blocksize * data->blocks < MXSMMC_SMALL_TRANSFER) { ret = mxsmmc_send_cmd_pio(priv, data); if (ret) { printf("MMC%d: Data timeout with command %d " "(status 0x%08x)!\n", mmc->block_dev.dev, cmd->cmdidx, reg); return ret; } } else { ret = mxsmmc_send_cmd_dma(priv, data); if (ret) { printf("MMC%d: DMA transfer failed\n", mmc->block_dev.dev); return ret; } } /* Check data errors */ reg = readl(&ssp_regs->hw_ssp_status); if (reg & (SSP_STATUS_TIMEOUT | SSP_STATUS_DATA_CRC_ERR | SSP_STATUS_FIFO_OVRFLW | SSP_STATUS_FIFO_UNDRFLW)) { printf("MMC%d: Data error with command %d (status 0x%08x)!\n", mmc->block_dev.dev, cmd->cmdidx, reg); return COMM_ERR; } return 0; } static void mxsmmc_set_ios(struct mmc *mmc) { struct mxsmmc_priv *priv = (struct mxsmmc_priv *)mmc->priv; struct mxs_ssp_regs *ssp_regs = priv->regs; /* Set the clock speed */ if (mmc->clock) mx28_set_ssp_busclock(priv->id, mmc->clock / 1000); switch (mmc->bus_width) { case 1: priv->buswidth = SSP_CTRL0_BUS_WIDTH_ONE_BIT; break; case 4: priv->buswidth = SSP_CTRL0_BUS_WIDTH_FOUR_BIT; break; case 8: priv->buswidth = SSP_CTRL0_BUS_WIDTH_EIGHT_BIT; break; } /* Set the bus width */ clrsetbits_le32(&ssp_regs->hw_ssp_ctrl0, SSP_CTRL0_BUS_WIDTH_MASK, priv->buswidth); debug("MMC%d: Set %d bits bus width\n", mmc->block_dev.dev, mmc->bus_width); } static int mxsmmc_init(struct mmc *mmc) { struct mxsmmc_priv *priv = (struct mxsmmc_priv *)mmc->priv; struct mxs_ssp_regs *ssp_regs = priv->regs; /* Reset SSP */ mxs_reset_block(&ssp_regs->hw_ssp_ctrl0_reg); /* 8 bits word length in MMC mode */ clrsetbits_le32(&ssp_regs->hw_ssp_ctrl1, SSP_CTRL1_SSP_MODE_MASK | SSP_CTRL1_WORD_LENGTH_MASK | SSP_CTRL1_DMA_ENABLE, SSP_CTRL1_SSP_MODE_SD_MMC | SSP_CTRL1_WORD_LENGTH_EIGHT_BITS); /* Set initial bit clock 400 KHz */ mx28_set_ssp_busclock(priv->id, 400); /* Send initial 74 clock cycles (185 us @ 400 KHz)*/ writel(SSP_CMD0_CONT_CLKING_EN, &ssp_regs->hw_ssp_cmd0_set); udelay(200); writel(SSP_CMD0_CONT_CLKING_EN, &ssp_regs->hw_ssp_cmd0_clr); return 0; } int mxsmmc_initialize(bd_t *bis, int id, int (*wp)(int)) { struct mxs_clkctrl_regs *clkctrl_regs = (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE; struct mmc *mmc = NULL; struct mxsmmc_priv *priv = NULL; int ret; mmc = malloc(sizeof(struct mmc)); if (!mmc) return -ENOMEM; priv = malloc(sizeof(struct mxsmmc_priv)); if (!priv) { free(mmc); return -ENOMEM; } priv->desc = mxs_dma_desc_alloc(); if (!priv->desc) { free(priv); free(mmc); return -ENOMEM; } ret = mxs_dma_init_channel(id); if (ret) return ret; priv->mmc_is_wp = wp; priv->id = id; switch (id) { case 0: priv->regs = (struct mxs_ssp_regs *)MXS_SSP0_BASE; priv->clkseq_bypass = CLKCTRL_CLKSEQ_BYPASS_SSP0; priv->clkctrl_ssp = &clkctrl_regs->hw_clkctrl_ssp0; break; case 1: priv->regs = (struct mxs_ssp_regs *)MXS_SSP1_BASE; priv->clkseq_bypass = CLKCTRL_CLKSEQ_BYPASS_SSP1; priv->clkctrl_ssp = &clkctrl_regs->hw_clkctrl_ssp1; break; case 2: priv->regs = (struct mxs_ssp_regs *)MXS_SSP2_BASE; priv->clkseq_bypass = CLKCTRL_CLKSEQ_BYPASS_SSP2; priv->clkctrl_ssp = &clkctrl_regs->hw_clkctrl_ssp2; break; case 3: priv->regs = (struct mxs_ssp_regs *)MXS_SSP3_BASE; priv->clkseq_bypass = CLKCTRL_CLKSEQ_BYPASS_SSP3; priv->clkctrl_ssp = &clkctrl_regs->hw_clkctrl_ssp3; break; } sprintf(mmc->name, "MXS MMC"); mmc->send_cmd = mxsmmc_send_cmd; mmc->set_ios = mxsmmc_set_ios; mmc->init = mxsmmc_init; mmc->getcd = NULL; mmc->priv = priv; mmc->voltages = MMC_VDD_32_33 | MMC_VDD_33_34; mmc->host_caps = MMC_MODE_4BIT | MMC_MODE_8BIT | MMC_MODE_HS_52MHz | MMC_MODE_HS; /* * SSPCLK = 480 * 18 / 29 / 1 = 297.731 MHz * SSP bit rate = SSPCLK / (CLOCK_DIVIDE * (1 + CLOCK_RATE)), * CLOCK_DIVIDE has to be an even value from 2 to 254, and * CLOCK_RATE could be any integer from 0 to 255. */ mmc->f_min = 400000; mmc->f_max = mxc_get_clock(MXC_SSP0_CLK + id) * 1000 / 2; mmc->b_max = 0x20; mmc_register(mmc); return 0; }