/* * Copyright 2008-2012 Freescale Semiconductor, Inc. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * Version 2 as published by the Free Software Foundation. */ /* * Generic driver for Freescale DDR/DDR2/DDR3 memory controller. * Based on code from spd_sdram.c * Author: James Yang [at freescale.com] */ #include #include #include #include #include "ddr.h" void fsl_ddr_set_lawbar( const common_timing_params_t *memctl_common_params, unsigned int memctl_interleaved, unsigned int ctrl_num); void fsl_ddr_set_intl3r(const unsigned int granule_size); /* processor specific function */ extern void fsl_ddr_set_memctl_regs(const fsl_ddr_cfg_regs_t *regs, unsigned int ctrl_num); #if defined(SPD_EEPROM_ADDRESS) || \ defined(SPD_EEPROM_ADDRESS1) || defined(SPD_EEPROM_ADDRESS2) || \ defined(SPD_EEPROM_ADDRESS3) || defined(SPD_EEPROM_ADDRESS4) #if (CONFIG_NUM_DDR_CONTROLLERS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1) u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = { [0][0] = SPD_EEPROM_ADDRESS, }; #elif (CONFIG_NUM_DDR_CONTROLLERS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2) u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = { [0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */ [0][1] = SPD_EEPROM_ADDRESS2, /* controller 1 */ }; #elif (CONFIG_NUM_DDR_CONTROLLERS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1) u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = { [0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */ [1][0] = SPD_EEPROM_ADDRESS2, /* controller 2 */ }; #elif (CONFIG_NUM_DDR_CONTROLLERS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2) u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = { [0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */ [0][1] = SPD_EEPROM_ADDRESS2, /* controller 1 */ [1][0] = SPD_EEPROM_ADDRESS3, /* controller 2 */ [1][1] = SPD_EEPROM_ADDRESS4, /* controller 2 */ }; #elif (CONFIG_NUM_DDR_CONTROLLERS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1) u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = { [0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */ [1][0] = SPD_EEPROM_ADDRESS2, /* controller 2 */ [2][0] = SPD_EEPROM_ADDRESS3, /* controller 3 */ }; #elif (CONFIG_NUM_DDR_CONTROLLERS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2) u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = { [0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */ [0][1] = SPD_EEPROM_ADDRESS2, /* controller 1 */ [1][0] = SPD_EEPROM_ADDRESS3, /* controller 2 */ [1][1] = SPD_EEPROM_ADDRESS4, /* controller 2 */ [2][0] = SPD_EEPROM_ADDRESS5, /* controller 3 */ [2][1] = SPD_EEPROM_ADDRESS6, /* controller 3 */ }; #endif static void __get_spd(generic_spd_eeprom_t *spd, u8 i2c_address) { int ret = i2c_read(i2c_address, 0, 1, (uchar *)spd, sizeof(generic_spd_eeprom_t)); if (ret) { if (i2c_address == #ifdef SPD_EEPROM_ADDRESS SPD_EEPROM_ADDRESS #elif defined(SPD_EEPROM_ADDRESS1) SPD_EEPROM_ADDRESS1 #endif ) { printf("DDR: failed to read SPD from address %u\n", i2c_address); } else { debug("DDR: failed to read SPD from address %u\n", i2c_address); } memset(spd, 0, sizeof(generic_spd_eeprom_t)); } } __attribute__((weak, alias("__get_spd"))) void get_spd(generic_spd_eeprom_t *spd, u8 i2c_address); void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd, unsigned int ctrl_num) { unsigned int i; unsigned int i2c_address = 0; if (ctrl_num >= CONFIG_NUM_DDR_CONTROLLERS) { printf("%s unexpected ctrl_num = %u\n", __FUNCTION__, ctrl_num); return; } for (i = 0; i < CONFIG_DIMM_SLOTS_PER_CTLR; i++) { i2c_address = spd_i2c_addr[ctrl_num][i]; get_spd(&(ctrl_dimms_spd[i]), i2c_address); } } #else void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd, unsigned int ctrl_num) { } #endif /* SPD_EEPROM_ADDRESSx */ /* * ASSUMPTIONS: * - Same number of CONFIG_DIMM_SLOTS_PER_CTLR on each controller * - Same memory data bus width on all controllers * * NOTES: * * The memory controller and associated documentation use confusing * terminology when referring to the orgranization of DRAM. * * Here is a terminology translation table: * * memory controller/documention |industry |this code |signals * -------------------------------|-----------|-----------|----------------- * physical bank/bank |rank |rank |chip select (CS) * logical bank/sub-bank |bank |bank |bank address (BA) * page/row |row |page |row address * ??? |column |column |column address * * The naming confusion is further exacerbated by the descriptions of the * memory controller interleaving feature, where accesses are interleaved * _BETWEEN_ two seperate memory controllers. This is configured only in * CS0_CONFIG[INTLV_CTL] of each memory controller. * * memory controller documentation | number of chip selects * | per memory controller supported * --------------------------------|----------------------------------------- * cache line interleaving | 1 (CS0 only) * page interleaving | 1 (CS0 only) * bank interleaving | 1 (CS0 only) * superbank interleraving | depends on bank (chip select) * | interleraving [rank interleaving] * | mode used on every memory controller * * Even further confusing is the existence of the interleaving feature * _WITHIN_ each memory controller. The feature is referred to in * documentation as chip select interleaving or bank interleaving, * although it is configured in the DDR_SDRAM_CFG field. * * Name of field | documentation name | this code * -----------------------------|-----------------------|------------------ * DDR_SDRAM_CFG[BA_INTLV_CTL] | Bank (chip select) | rank interleaving * | interleaving */ const char *step_string_tbl[] = { "STEP_GET_SPD", "STEP_COMPUTE_DIMM_PARMS", "STEP_COMPUTE_COMMON_PARMS", "STEP_GATHER_OPTS", "STEP_ASSIGN_ADDRESSES", "STEP_COMPUTE_REGS", "STEP_PROGRAM_REGS", "STEP_ALL" }; const char * step_to_string(unsigned int step) { unsigned int s = __ilog2(step); if ((1 << s) != step) return step_string_tbl[7]; return step_string_tbl[s]; } unsigned long long step_assign_addresses(fsl_ddr_info_t *pinfo, unsigned int dbw_cap_adj[]) { int i, j; unsigned long long total_mem, current_mem_base, total_ctlr_mem; unsigned long long rank_density, ctlr_density = 0; /* * If a reduced data width is requested, but the SPD * specifies a physically wider device, adjust the * computed dimm capacities accordingly before * assigning addresses. */ for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) { unsigned int found = 0; switch (pinfo->memctl_opts[i].data_bus_width) { case 2: /* 16-bit */ for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) { unsigned int dw; if (!pinfo->dimm_params[i][j].n_ranks) continue; dw = pinfo->dimm_params[i][j].primary_sdram_width; if ((dw == 72 || dw == 64)) { dbw_cap_adj[i] = 2; break; } else if ((dw == 40 || dw == 32)) { dbw_cap_adj[i] = 1; break; } } break; case 1: /* 32-bit */ for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) { unsigned int dw; dw = pinfo->dimm_params[i][j].data_width; if (pinfo->dimm_params[i][j].n_ranks && (dw == 72 || dw == 64)) { /* * FIXME: can't really do it * like this because this just * further reduces the memory */ found = 1; break; } } if (found) { dbw_cap_adj[i] = 1; } break; case 0: /* 64-bit */ break; default: printf("unexpected data bus width " "specified controller %u\n", i); return 1; } debug("dbw_cap_adj[%d]=%d\n", i, dbw_cap_adj[i]); } current_mem_base = 0ull; total_mem = 0; if (pinfo->memctl_opts[0].memctl_interleaving) { rank_density = pinfo->dimm_params[0][0].rank_density >> dbw_cap_adj[0]; switch (pinfo->memctl_opts[0].ba_intlv_ctl & FSL_DDR_CS0_CS1_CS2_CS3) { case FSL_DDR_CS0_CS1_CS2_CS3: ctlr_density = 4 * rank_density; break; case FSL_DDR_CS0_CS1: case FSL_DDR_CS0_CS1_AND_CS2_CS3: ctlr_density = 2 * rank_density; break; case FSL_DDR_CS2_CS3: default: ctlr_density = rank_density; break; } debug("rank density is 0x%llx, ctlr density is 0x%llx\n", rank_density, ctlr_density); for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) { if (pinfo->memctl_opts[i].memctl_interleaving) { switch (pinfo->memctl_opts[i].memctl_interleaving_mode) { case FSL_DDR_CACHE_LINE_INTERLEAVING: case FSL_DDR_PAGE_INTERLEAVING: case FSL_DDR_BANK_INTERLEAVING: case FSL_DDR_SUPERBANK_INTERLEAVING: total_ctlr_mem = 2 * ctlr_density; break; case FSL_DDR_3WAY_1KB_INTERLEAVING: case FSL_DDR_3WAY_4KB_INTERLEAVING: case FSL_DDR_3WAY_8KB_INTERLEAVING: total_ctlr_mem = 3 * ctlr_density; break; case FSL_DDR_4WAY_1KB_INTERLEAVING: case FSL_DDR_4WAY_4KB_INTERLEAVING: case FSL_DDR_4WAY_8KB_INTERLEAVING: total_ctlr_mem = 4 * ctlr_density; break; default: panic("Unknown interleaving mode"); } pinfo->common_timing_params[i].base_address = current_mem_base; pinfo->common_timing_params[i].total_mem = total_ctlr_mem; total_mem = current_mem_base + total_ctlr_mem; debug("ctrl %d base 0x%llx\n", i, current_mem_base); debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem); } else { /* when 3rd controller not interleaved */ current_mem_base = total_mem; total_ctlr_mem = 0; pinfo->common_timing_params[i].base_address = current_mem_base; for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) { unsigned long long cap = pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i]; pinfo->dimm_params[i][j].base_address = current_mem_base; debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base); current_mem_base += cap; total_ctlr_mem += cap; } debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem); pinfo->common_timing_params[i].total_mem = total_ctlr_mem; total_mem += total_ctlr_mem; } } } else { /* * Simple linear assignment if memory * controllers are not interleaved. */ for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) { total_ctlr_mem = 0; pinfo->common_timing_params[i].base_address = current_mem_base; for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) { /* Compute DIMM base addresses. */ unsigned long long cap = pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i]; pinfo->dimm_params[i][j].base_address = current_mem_base; debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base); current_mem_base += cap; total_ctlr_mem += cap; } debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem); pinfo->common_timing_params[i].total_mem = total_ctlr_mem; total_mem += total_ctlr_mem; } } debug("Total mem by %s is 0x%llx\n", __func__, total_mem); return total_mem; } unsigned long long fsl_ddr_compute(fsl_ddr_info_t *pinfo, unsigned int start_step, unsigned int size_only) { unsigned int i, j; unsigned long long total_mem = 0; fsl_ddr_cfg_regs_t *ddr_reg = pinfo->fsl_ddr_config_reg; common_timing_params_t *timing_params = pinfo->common_timing_params; /* data bus width capacity adjust shift amount */ unsigned int dbw_capacity_adjust[CONFIG_NUM_DDR_CONTROLLERS]; for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) { dbw_capacity_adjust[i] = 0; } debug("starting at step %u (%s)\n", start_step, step_to_string(start_step)); switch (start_step) { case STEP_GET_SPD: #if defined(CONFIG_DDR_SPD) || defined(CONFIG_SPD_EEPROM) /* STEP 1: Gather all DIMM SPD data */ for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) { fsl_ddr_get_spd(pinfo->spd_installed_dimms[i], i); } case STEP_COMPUTE_DIMM_PARMS: /* STEP 2: Compute DIMM parameters from SPD data */ for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) { for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) { unsigned int retval; generic_spd_eeprom_t *spd = &(pinfo->spd_installed_dimms[i][j]); dimm_params_t *pdimm = &(pinfo->dimm_params[i][j]); retval = compute_dimm_parameters(spd, pdimm, i); #ifdef CONFIG_SYS_DDR_RAW_TIMING if (!i && !j && retval) { printf("SPD error on controller %d! " "Trying fallback to raw timing " "calculation\n", i); fsl_ddr_get_dimm_params(pdimm, i, j); } #else if (retval == 2) { printf("Error: compute_dimm_parameters" " non-zero returned FATAL value " "for memctl=%u dimm=%u\n", i, j); return 0; } #endif if (retval) { debug("Warning: compute_dimm_parameters" " non-zero return value for memctl=%u " "dimm=%u\n", i, j); } } } #elif defined(CONFIG_SYS_DDR_RAW_TIMING) case STEP_COMPUTE_DIMM_PARMS: for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) { for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) { dimm_params_t *pdimm = &(pinfo->dimm_params[i][j]); fsl_ddr_get_dimm_params(pdimm, i, j); } } debug("Filling dimm parameters from board specific file\n"); #endif case STEP_COMPUTE_COMMON_PARMS: /* * STEP 3: Compute a common set of timing parameters * suitable for all of the DIMMs on each memory controller */ for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) { debug("Computing lowest common DIMM" " parameters for memctl=%u\n", i); compute_lowest_common_dimm_parameters( pinfo->dimm_params[i], &timing_params[i], CONFIG_DIMM_SLOTS_PER_CTLR); } case STEP_GATHER_OPTS: /* STEP 4: Gather configuration requirements from user */ for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) { debug("Reloading memory controller " "configuration options for memctl=%u\n", i); /* * This "reloads" the memory controller options * to defaults. If the user "edits" an option, * next_step points to the step after this, * which is currently STEP_ASSIGN_ADDRESSES. */ populate_memctl_options( timing_params[i].all_DIMMs_registered, &pinfo->memctl_opts[i], pinfo->dimm_params[i], i); } case STEP_ASSIGN_ADDRESSES: /* STEP 5: Assign addresses to chip selects */ check_interleaving_options(pinfo); total_mem = step_assign_addresses(pinfo, dbw_capacity_adjust); case STEP_COMPUTE_REGS: /* STEP 6: compute controller register values */ debug("FSL Memory ctrl register computation\n"); for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) { if (timing_params[i].ndimms_present == 0) { memset(&ddr_reg[i], 0, sizeof(fsl_ddr_cfg_regs_t)); continue; } compute_fsl_memctl_config_regs( &pinfo->memctl_opts[i], &ddr_reg[i], &timing_params[i], pinfo->dimm_params[i], dbw_capacity_adjust[i], size_only); } default: break; } { /* * Compute the amount of memory available just by * looking for the highest valid CSn_BNDS value. * This allows us to also experiment with using * only CS0 when using dual-rank DIMMs. */ unsigned int max_end = 0; for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) { for (j = 0; j < CONFIG_CHIP_SELECTS_PER_CTRL; j++) { fsl_ddr_cfg_regs_t *reg = &ddr_reg[i]; if (reg->cs[j].config & 0x80000000) { unsigned int end; end = reg->cs[j].bnds & 0xFFF; if (end > max_end) { max_end = end; } } } } total_mem = 1 + (((unsigned long long)max_end << 24ULL) | 0xFFFFFFULL); } return total_mem; } /* * fsl_ddr_sdram() -- this is the main function to be called by * initdram() in the board file. * * It returns amount of memory configured in bytes. */ phys_size_t fsl_ddr_sdram(void) { unsigned int i; unsigned int law_memctl = LAW_TRGT_IF_DDR_1; unsigned long long total_memory; fsl_ddr_info_t info; /* Reset info structure. */ memset(&info, 0, sizeof(fsl_ddr_info_t)); /* Compute it once normally. */ #ifdef CONFIG_FSL_DDR_INTERACTIVE if (getenv("ddr_interactive")) total_memory = fsl_ddr_interactive(&info); else #endif total_memory = fsl_ddr_compute(&info, STEP_GET_SPD, 0); /* setup 3-way interleaving before enabling DDRC */ switch (info.memctl_opts[0].memctl_interleaving_mode) { case FSL_DDR_3WAY_1KB_INTERLEAVING: case FSL_DDR_3WAY_4KB_INTERLEAVING: case FSL_DDR_3WAY_8KB_INTERLEAVING: fsl_ddr_set_intl3r(info.memctl_opts[0].memctl_interleaving_mode); break; default: break; } /* Program configuration registers. */ for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) { debug("Programming controller %u\n", i); if (info.common_timing_params[i].ndimms_present == 0) { debug("No dimms present on controller %u; " "skipping programming\n", i); continue; } fsl_ddr_set_memctl_regs(&(info.fsl_ddr_config_reg[i]), i); } /* program LAWs */ for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) { if (info.memctl_opts[i].memctl_interleaving) { switch (info.memctl_opts[i].memctl_interleaving_mode) { case FSL_DDR_CACHE_LINE_INTERLEAVING: case FSL_DDR_PAGE_INTERLEAVING: case FSL_DDR_BANK_INTERLEAVING: case FSL_DDR_SUPERBANK_INTERLEAVING: if (i == 0) { law_memctl = LAW_TRGT_IF_DDR_INTRLV; fsl_ddr_set_lawbar(&info.common_timing_params[i], law_memctl, i); } else if (i == 2) { law_memctl = LAW_TRGT_IF_DDR_INTLV_34; fsl_ddr_set_lawbar(&info.common_timing_params[i], law_memctl, i); } break; case FSL_DDR_3WAY_1KB_INTERLEAVING: case FSL_DDR_3WAY_4KB_INTERLEAVING: case FSL_DDR_3WAY_8KB_INTERLEAVING: law_memctl = LAW_TRGT_IF_DDR_INTLV_123; if (i == 0) { fsl_ddr_set_lawbar(&info.common_timing_params[i], law_memctl, i); } break; case FSL_DDR_4WAY_1KB_INTERLEAVING: case FSL_DDR_4WAY_4KB_INTERLEAVING: case FSL_DDR_4WAY_8KB_INTERLEAVING: law_memctl = LAW_TRGT_IF_DDR_INTLV_1234; if (i == 0) fsl_ddr_set_lawbar(&info.common_timing_params[i], law_memctl, i); /* place holder for future 4-way interleaving */ break; default: break; } } else { switch (i) { case 0: law_memctl = LAW_TRGT_IF_DDR_1; break; case 1: law_memctl = LAW_TRGT_IF_DDR_2; break; case 2: law_memctl = LAW_TRGT_IF_DDR_3; break; case 3: law_memctl = LAW_TRGT_IF_DDR_4; break; default: break; } fsl_ddr_set_lawbar(&info.common_timing_params[i], law_memctl, i); } } debug("total_memory by %s = %llu\n", __func__, total_memory); #if !defined(CONFIG_PHYS_64BIT) /* Check for 4G or more. Bad. */ if (total_memory >= (1ull << 32)) { printf("Detected %lld MB of memory\n", total_memory >> 20); printf(" This U-Boot only supports < 4G of DDR\n"); printf(" You could rebuild it with CONFIG_PHYS_64BIT\n"); printf(" "); /* re-align to match init_func_ram print */ total_memory = CONFIG_MAX_MEM_MAPPED; } #endif return total_memory; } /* * fsl_ddr_sdram_size() - This function only returns the size of the total * memory without setting ddr control registers. */ phys_size_t fsl_ddr_sdram_size(void) { fsl_ddr_info_t info; unsigned long long total_memory = 0; memset(&info, 0 , sizeof(fsl_ddr_info_t)); /* Compute it once normally. */ total_memory = fsl_ddr_compute(&info, STEP_GET_SPD, 1); return total_memory; }