summaryrefslogtreecommitdiff
path: root/MdeModulePkg/Core/Pei/Dispatcher/Dispatcher.c
blob: 2063fa4dbb26f1883071564b59cebf534c7bf0de (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
/** @file
  EFI PEI Core dispatch services
  
Copyright (c) 2006 - 2013, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution.  The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php

THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.

**/

#include "PeiMain.h"

///
/// temporary memory is filled with this initial value during SEC phase
///
#define INIT_CAR_VALUE 0x5AA55AA5

typedef struct {
  EFI_STATUS_CODE_DATA  DataHeader;
  EFI_HANDLE            Handle;
} PEIM_FILE_HANDLE_EXTENDED_DATA;

/**

  Discover all Peims and optional Apriori file in one FV. There is at most one
  Apriori file in one FV.


  @param Private          Pointer to the private data passed in from caller
  @param CoreFileHandle   The instance of PEI_CORE_FV_HANDLE.

**/
VOID
DiscoverPeimsAndOrderWithApriori (
  IN  PEI_CORE_INSTANCE    *Private,
  IN  PEI_CORE_FV_HANDLE   *CoreFileHandle
  )
{
  EFI_STATUS                          Status;
  EFI_PEI_FILE_HANDLE                 FileHandle;
  EFI_PEI_FILE_HANDLE                 AprioriFileHandle;
  EFI_GUID                            *Apriori;
  UINTN                               Index;
  UINTN                               Index2;
  UINTN                               PeimIndex;
  UINTN                               PeimCount;
  EFI_GUID                            *Guid;
  EFI_PEI_FILE_HANDLE                 TempFileHandles[FixedPcdGet32 (PcdPeiCoreMaxPeimPerFv)];
  EFI_GUID                            FileGuid[FixedPcdGet32 (PcdPeiCoreMaxPeimPerFv)];
  EFI_PEI_FIRMWARE_VOLUME_PPI         *FvPpi;
  EFI_FV_FILE_INFO                    FileInfo;
  
  FvPpi = CoreFileHandle->FvPpi;
  
  //
  // Walk the FV and find all the PEIMs and the Apriori file.
  //
  AprioriFileHandle = NULL;
  Private->CurrentFvFileHandles[0] = NULL;
  Guid = NULL;
  FileHandle = NULL;

  //
  // If the current Fv has been scanned, directly get its cachable record.
  //
  if (Private->Fv[Private->CurrentPeimFvCount].ScanFv) {
    CopyMem (Private->CurrentFvFileHandles, Private->Fv[Private->CurrentPeimFvCount].FvFileHandles, sizeof (Private->CurrentFvFileHandles));
    return;
  }

  //
  // Go ahead to scan this Fv, and cache FileHandles within it.
  //
  for (PeimCount = 0; PeimCount < FixedPcdGet32 (PcdPeiCoreMaxPeimPerFv); PeimCount++) {
    Status = FvPpi->FindFileByType (FvPpi, PEI_CORE_INTERNAL_FFS_FILE_DISPATCH_TYPE, CoreFileHandle->FvHandle, &FileHandle);
    if (Status != EFI_SUCCESS) {
      break;
    }

    Private->CurrentFvFileHandles[PeimCount] = FileHandle;
  }
  
  //
  // Check whether the count of Peims exceeds the max support PEIMs in a FV image
  // If more Peims are required in a FV image, PcdPeiCoreMaxPeimPerFv can be set to a larger value in DSC file.
  //
  ASSERT (PeimCount < FixedPcdGet32 (PcdPeiCoreMaxPeimPerFv));

  //
  // Get Apriori File handle
  //
  Private->AprioriCount = 0;
  Status = FvPpi->FindFileByName (FvPpi, &gPeiAprioriFileNameGuid, &CoreFileHandle->FvHandle, &AprioriFileHandle);
  if (!EFI_ERROR(Status) && AprioriFileHandle != NULL) {
    //
    // Read the Apriori file
    //
    Status = FvPpi->FindSectionByType (FvPpi, EFI_SECTION_RAW, AprioriFileHandle, (VOID **) &Apriori);
    if (!EFI_ERROR (Status)) {
      //
      // Calculate the number of PEIMs in the A Priori list
      //
      Status = FvPpi->GetFileInfo (FvPpi, AprioriFileHandle, &FileInfo);
      ASSERT_EFI_ERROR (Status);
      Private->AprioriCount = FileInfo.BufferSize;
      if (IS_SECTION2 (FileInfo.Buffer)) {
        Private->AprioriCount -= sizeof (EFI_COMMON_SECTION_HEADER2);
      } else {
        Private->AprioriCount -= sizeof (EFI_COMMON_SECTION_HEADER);
      }
      Private->AprioriCount /= sizeof (EFI_GUID);

      ZeroMem (FileGuid, sizeof (FileGuid));
      for (Index = 0; Index < PeimCount; Index++) {
        //
        // Make an array of file name guids that matches the FileHandle array so we can convert
        // quickly from file name to file handle
        //
        Status = FvPpi->GetFileInfo (FvPpi, Private->CurrentFvFileHandles[Index], &FileInfo);
        CopyMem (&FileGuid[Index], &FileInfo.FileName, sizeof(EFI_GUID));
      }

      //
      // Walk through FileGuid array to find out who is invalid PEIM guid in Apriori file.
      // Add available PEIMs in Apriori file into TempFileHandles array at first.
      //
      Index2 = 0;
      for (Index = 0; Index2 < Private->AprioriCount; Index++) {
        while (Index2 < Private->AprioriCount) {
          Guid = ScanGuid (FileGuid, PeimCount * sizeof (EFI_GUID), &Apriori[Index2++]);
          if (Guid != NULL) {
            break;
          }
        }
        if (Guid == NULL) {
          break;
        }
        PeimIndex = ((UINTN)Guid - (UINTN)&FileGuid[0])/sizeof (EFI_GUID);
        TempFileHandles[Index] = Private->CurrentFvFileHandles[PeimIndex];

        //
        // Since we have copied the file handle we can remove it from this list.
        //
        Private->CurrentFvFileHandles[PeimIndex] = NULL;
      }

      //
      // Update valid Aprioricount
      //
      Private->AprioriCount = Index;

      //
      // Add in any PEIMs not in the Apriori file
      //
      for (;Index < PeimCount; Index++) {
        for (Index2 = 0; Index2 < PeimCount; Index2++) {
          if (Private->CurrentFvFileHandles[Index2] != NULL) {
            TempFileHandles[Index] = Private->CurrentFvFileHandles[Index2];
            Private->CurrentFvFileHandles[Index2] = NULL;
            break;
          }
        }
      }
      //
      //Index the end of array contains re-range Pei moudle.
      //
      TempFileHandles[Index] = NULL;

      //
      // Private->CurrentFvFileHandles is currently in PEIM in the FV order.
      // We need to update it to start with files in the A Priori list and
      // then the remaining files in PEIM order.
      //
      CopyMem (Private->CurrentFvFileHandles, TempFileHandles, sizeof (Private->CurrentFvFileHandles));
    }
  }
  //
  // Cache the current Fv File Handle. So that we don't have to scan the Fv again.
  // Instead, we can retrieve the file handles within this Fv from cachable data.
  //
  Private->Fv[Private->CurrentPeimFvCount].ScanFv = TRUE;
  CopyMem (Private->Fv[Private->CurrentPeimFvCount].FvFileHandles, Private->CurrentFvFileHandles, sizeof (Private->CurrentFvFileHandles));

}

//
// This is the minimum memory required by DxeCore initialization. When LMFA feature enabled,
// This part of memory still need reserved on the very top of memory so that the DXE Core could  
// use these memory for data initialization. This macro should be sync with the same marco
// defined in DXE Core.
//
#define MINIMUM_INITIAL_MEMORY_SIZE 0x10000
/**
  This function is to test if the memory range described in resource HOB is available or not. 
  
  This function should only be invoked when Loading Module at Fixed Address(LMFA) feature is enabled. Some platform may allocate the 
  memory before PeiLoadFixAddressHook in invoked. so this function is to test if the memory range described by the input resource HOB is
  available or not.

  @param PrivateData         Pointer to the private data passed in from caller
  @param ResourceHob         Pointer to a resource HOB which described the memory range described by the input resource HOB
**/
BOOLEAN
PeiLoadFixAddressIsMemoryRangeAvailable (
  IN PEI_CORE_INSTANCE                  *PrivateData,
  IN EFI_HOB_RESOURCE_DESCRIPTOR        *ResourceHob
  )
{
	EFI_HOB_MEMORY_ALLOCATION          *MemoryHob;
	BOOLEAN                             IsAvailable;
	EFI_PEI_HOB_POINTERS                Hob;
	
  IsAvailable = TRUE;
	if (PrivateData == NULL || ResourceHob == NULL) {
	  return FALSE;
	}
	//
  // test if the memory range describe in the HOB is already allocated.
  //
  for (Hob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(Hob); Hob.Raw = GET_NEXT_HOB(Hob)) {
    //                                                              
    // See if this is a memory allocation HOB                     
    //
    if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_MEMORY_ALLOCATION) { 
      MemoryHob = Hob.MemoryAllocation;
      if(MemoryHob->AllocDescriptor.MemoryBaseAddress == ResourceHob->PhysicalStart && 
         MemoryHob->AllocDescriptor.MemoryBaseAddress + MemoryHob->AllocDescriptor.MemoryLength == ResourceHob->PhysicalStart + ResourceHob->ResourceLength) {
         IsAvailable = FALSE;
         break;  
       }
     }
  }
  
  return IsAvailable;
       
}
/**
  Hook function for Loading Module at Fixed Address feature
  
  This function should only be invoked when Loading Module at Fixed Address(LMFA) feature is enabled. When feature is
  configured as Load Modules at Fix Absolute Address, this function is to validate the top address assigned by user. When 
  feature is configured as Load Modules at Fixed Offset, the functino is to find the top address which is TOLM-TSEG in general.  
  And also the function will re-install PEI memory. 

  @param PrivateData         Pointer to the private data passed in from caller

**/
VOID
PeiLoadFixAddressHook(
  IN PEI_CORE_INSTANCE           *PrivateData
  )
{
  EFI_PHYSICAL_ADDRESS               TopLoadingAddress;
  UINT64                             PeiMemorySize;
  UINT64                             TotalReservedMemorySize;
  UINT64                             MemoryRangeEnd;
  EFI_PHYSICAL_ADDRESS               HighAddress; 
  EFI_HOB_RESOURCE_DESCRIPTOR        *ResourceHob;
  EFI_HOB_RESOURCE_DESCRIPTOR        *NextResourceHob;
  EFI_HOB_RESOURCE_DESCRIPTOR        *CurrentResourceHob;
  EFI_PEI_HOB_POINTERS               CurrentHob;
  EFI_PEI_HOB_POINTERS               Hob;
  EFI_PEI_HOB_POINTERS               NextHob;
  EFI_HOB_MEMORY_ALLOCATION          *MemoryHob;
  //
  // Initialize Local Variables
  //
  CurrentResourceHob    = NULL;
  ResourceHob           = NULL;
  NextResourceHob       = NULL;
  HighAddress           = 0;
  TopLoadingAddress     = 0;
  MemoryRangeEnd      = 0;
  CurrentHob.Raw      = PrivateData->HobList.Raw;
  PeiMemorySize = PrivateData->PhysicalMemoryLength;
  //
  // The top reserved memory include 3 parts: the topest range is for DXE core initialization with the size  MINIMUM_INITIAL_MEMORY_SIZE
  // then RuntimeCodePage range and Boot time code range.
  //  
  TotalReservedMemorySize = MINIMUM_INITIAL_MEMORY_SIZE + EFI_PAGES_TO_SIZE(PcdGet32(PcdLoadFixAddressRuntimeCodePageNumber));
  TotalReservedMemorySize+= EFI_PAGES_TO_SIZE(PcdGet32(PcdLoadFixAddressBootTimeCodePageNumber)) ;  
  //
  // PEI memory range lies below the top reserved memory
  // 
  TotalReservedMemorySize += PeiMemorySize;
  
  DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: PcdLoadFixAddressRuntimeCodePageNumber= 0x%x.\n", PcdGet32(PcdLoadFixAddressRuntimeCodePageNumber)));
  DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: PcdLoadFixAddressBootTimeCodePageNumber= 0x%x.\n", PcdGet32(PcdLoadFixAddressBootTimeCodePageNumber)));
  DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: PcdLoadFixAddressPeiCodePageNumber= 0x%x.\n", PcdGet32(PcdLoadFixAddressPeiCodePageNumber)));   
  DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: Total Reserved Memory Size = 0x%lx.\n", TotalReservedMemorySize));
  //
  // Loop through the system memory typed hob to merge the adjacent memory range 
  //
  for (Hob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(Hob); Hob.Raw = GET_NEXT_HOB(Hob)) {
    //                                                              
    // See if this is a resource descriptor HOB                     
    //
    if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
      
      ResourceHob = Hob.ResourceDescriptor;  
      //
      // If range described in this hob is not system memory or heigher than MAX_ADDRESS, ignored.
      //
      if (ResourceHob->ResourceType != EFI_RESOURCE_SYSTEM_MEMORY ||
          ResourceHob->PhysicalStart + ResourceHob->ResourceLength > MAX_ADDRESS)   {
        continue;
      }   
      
      for (NextHob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(NextHob); NextHob.Raw = GET_NEXT_HOB(NextHob)) {       
        if (NextHob.Raw == Hob.Raw){
          continue;
        }  
        //
        // See if this is a resource descriptor HOB
        //
        if (GET_HOB_TYPE (NextHob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
      
          NextResourceHob = NextHob.ResourceDescriptor;
          //
          // test if range described in this NextResourceHob is system memory and have the same attribute.
          // Note: Here is a assumption that system memory should always be healthy even without test.
          //    
          if (NextResourceHob->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY &&
             (((NextResourceHob->ResourceAttribute^ResourceHob->ResourceAttribute)&(~EFI_RESOURCE_ATTRIBUTE_TESTED)) == 0)){
              
              //
              // See if the memory range described in ResourceHob and NextResourceHob is adjacent
              //
              if ((ResourceHob->PhysicalStart <= NextResourceHob->PhysicalStart && 
                    ResourceHob->PhysicalStart + ResourceHob->ResourceLength >= NextResourceHob->PhysicalStart)|| 
                  (ResourceHob->PhysicalStart >= NextResourceHob->PhysicalStart&&
                     ResourceHob->PhysicalStart <= NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength)) {
             
                MemoryRangeEnd = ((ResourceHob->PhysicalStart + ResourceHob->ResourceLength)>(NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength)) ?
                                     (ResourceHob->PhysicalStart + ResourceHob->ResourceLength):(NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength);
          
                ResourceHob->PhysicalStart = (ResourceHob->PhysicalStart < NextResourceHob->PhysicalStart) ? 
                                                    ResourceHob->PhysicalStart : NextResourceHob->PhysicalStart;
                
               
                ResourceHob->ResourceLength = (MemoryRangeEnd - ResourceHob->PhysicalStart);
                
                ResourceHob->ResourceAttribute = ResourceHob->ResourceAttribute & (~EFI_RESOURCE_ATTRIBUTE_TESTED);
                //
                // Delete the NextResourceHob by marking it as unused.
                //
                GET_HOB_TYPE (NextHob) = EFI_HOB_TYPE_UNUSED;
                
              }
           }
        } 
      }
    } 
  }
  //
  // Some platform is already allocated pages before the HOB re-org. Here to build dedicated resource HOB to describe
  //  the allocated memory range
  //
  for (Hob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(Hob); Hob.Raw = GET_NEXT_HOB(Hob)) {
    //                                                              
    // See if this is a memory allocation HOB                     
    //
    if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_MEMORY_ALLOCATION) {
      MemoryHob = Hob.MemoryAllocation;
      for (NextHob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(NextHob); NextHob.Raw = GET_NEXT_HOB(NextHob)) {
        //
        // See if this is a resource descriptor HOB
        //
        if (GET_HOB_TYPE (NextHob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
        	NextResourceHob = NextHob.ResourceDescriptor;
          //
          // If range described in this hob is not system memory or heigher than MAX_ADDRESS, ignored.
          //
          if (NextResourceHob->ResourceType != EFI_RESOURCE_SYSTEM_MEMORY || NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength > MAX_ADDRESS) {
            continue;
          }
          //
          // If the range describe in memory allocation HOB  belongs to the memroy range described by the resource hob
          //          
          if (MemoryHob->AllocDescriptor.MemoryBaseAddress >= NextResourceHob->PhysicalStart && 
              MemoryHob->AllocDescriptor.MemoryBaseAddress + MemoryHob->AllocDescriptor.MemoryLength <= NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength) {
             //
             // Build seperate resource hob for this allocated range
             //                     
             if (MemoryHob->AllocDescriptor.MemoryBaseAddress > NextResourceHob->PhysicalStart) {
               BuildResourceDescriptorHob (
                 EFI_RESOURCE_SYSTEM_MEMORY,                       
                 NextResourceHob->ResourceAttribute,
                 NextResourceHob->PhysicalStart,                             
                 (MemoryHob->AllocDescriptor.MemoryBaseAddress - NextResourceHob->PhysicalStart)      
               );
             }
             if (MemoryHob->AllocDescriptor.MemoryBaseAddress + MemoryHob->AllocDescriptor.MemoryLength < NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength) {
               BuildResourceDescriptorHob (
                 EFI_RESOURCE_SYSTEM_MEMORY,                       
                 NextResourceHob->ResourceAttribute,
                 MemoryHob->AllocDescriptor.MemoryBaseAddress + MemoryHob->AllocDescriptor.MemoryLength,                            
                 (NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength -(MemoryHob->AllocDescriptor.MemoryBaseAddress + MemoryHob->AllocDescriptor.MemoryLength))    
               );
             }
             NextResourceHob->PhysicalStart = MemoryHob->AllocDescriptor.MemoryBaseAddress;
             NextResourceHob->ResourceLength = MemoryHob->AllocDescriptor.MemoryLength;
             break;
          }
        }
      }
    }
  }

  //
  // Try to find and validate the TOP address.
  //  
  if ((INT64)PcdGet64(PcdLoadModuleAtFixAddressEnable) > 0 ) {
    //
    // The LMFA feature is enabled as load module at fixed absolute address.
    //
    TopLoadingAddress = (EFI_PHYSICAL_ADDRESS)PcdGet64(PcdLoadModuleAtFixAddressEnable);
    DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: Loading module at fixed absolute address.\n"));
    //
    // validate the Address. Loop the resource descriptor HOB to make sure the address is in valid memory range
    //
    if ((TopLoadingAddress & EFI_PAGE_MASK) != 0) {
      DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED ERROR:Top Address 0x%lx is invalid since top address should be page align. \n", TopLoadingAddress)); 
      ASSERT (FALSE);    
    }
    //
    // Search for a memory region that is below MAX_ADDRESS and in which TopLoadingAddress lies 
    //
    for (Hob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(Hob); Hob.Raw = GET_NEXT_HOB(Hob)) {
      //
      // See if this is a resource descriptor HOB
      //
      if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {

        ResourceHob = Hob.ResourceDescriptor;
        //
        // See if this resource descrior HOB describes tested system memory below MAX_ADDRESS
        //    
        if (ResourceHob->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY &&
            ResourceHob->PhysicalStart + ResourceHob->ResourceLength <= MAX_ADDRESS) {
            //
            // See if Top address specified by user is valid.
            //
            if (ResourceHob->PhysicalStart + TotalReservedMemorySize < TopLoadingAddress && 
                (ResourceHob->PhysicalStart + ResourceHob->ResourceLength - MINIMUM_INITIAL_MEMORY_SIZE) >= TopLoadingAddress && 
                PeiLoadFixAddressIsMemoryRangeAvailable(PrivateData, ResourceHob)) {
              CurrentResourceHob = ResourceHob; 
              CurrentHob = Hob;
              break;
           }
        }
      }  
    }  
    if (CurrentResourceHob != NULL) {
      DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO:Top Address 0x%lx is valid \n",  TopLoadingAddress));
      TopLoadingAddress += MINIMUM_INITIAL_MEMORY_SIZE; 
    } else {
      DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED ERROR:Top Address 0x%lx is invalid \n",  TopLoadingAddress)); 
      DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED ERROR:The recommended Top Address for the platform is: \n")); 
      //
      // Print the recomended Top address range.
      // 
      for (Hob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(Hob); Hob.Raw = GET_NEXT_HOB(Hob)) {
        //
        // See if this is a resource descriptor HOB
        //
        if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
        
          ResourceHob = Hob.ResourceDescriptor;
          //
          // See if this resource descrior HOB describes tested system memory below MAX_ADDRESS
          //    
          if (ResourceHob->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY &&
              ResourceHob->PhysicalStart + ResourceHob->ResourceLength <= MAX_ADDRESS) {
              //
              // See if Top address specified by user is valid.
              //
              if (ResourceHob->ResourceLength > TotalReservedMemorySize && PeiLoadFixAddressIsMemoryRangeAvailable(PrivateData, ResourceHob)) {
                 DEBUG ((EFI_D_INFO, "(0x%lx, 0x%lx)\n",  
                          (ResourceHob->PhysicalStart + TotalReservedMemorySize -MINIMUM_INITIAL_MEMORY_SIZE), 
                          (ResourceHob->PhysicalStart + ResourceHob->ResourceLength -MINIMUM_INITIAL_MEMORY_SIZE) 
                        )); 
              }
          }
        }
      }  
      //
      // Assert here 
      //
      ASSERT (FALSE);   
      return;   
    }     
  } else {
    //
    // The LMFA feature is enabled as load module at fixed offset relative to TOLM
    // Parse the Hob list to find the topest available memory. Generally it is (TOLM - TSEG)
    //
    //
    // Search for a tested memory region that is below MAX_ADDRESS
    //
    for (Hob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST(Hob); Hob.Raw = GET_NEXT_HOB(Hob)) {
      //
      // See if this is a resource descriptor HOB 
      //
      if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
        
        ResourceHob = Hob.ResourceDescriptor;                                                                                                                                                                                                                               
        //
        // See if this resource descrior HOB describes tested system memory below MAX_ADDRESS
        //
        if (ResourceHob->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY && 
            ResourceHob->PhysicalStart + ResourceHob->ResourceLength <= MAX_ADDRESS &&
            ResourceHob->ResourceLength > TotalReservedMemorySize && PeiLoadFixAddressIsMemoryRangeAvailable(PrivateData, ResourceHob)) {
          //
          // See if this is the highest largest system memory region below MaxAddress
          //
          if (ResourceHob->PhysicalStart > HighAddress) {
             CurrentResourceHob = ResourceHob;
             CurrentHob = Hob;
             HighAddress = CurrentResourceHob->PhysicalStart;
          }
        }
      }  
    }
    if (CurrentResourceHob == NULL) {
      DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED ERROR:The System Memory is too small\n")); 
      //
      // Assert here 
      //
      ASSERT (FALSE);
      return;  
    } else {
      TopLoadingAddress = CurrentResourceHob->PhysicalStart + CurrentResourceHob->ResourceLength ; 
    }         
  }
  
  if (CurrentResourceHob != NULL) {
    //
    // rebuild resource HOB for PEI memmory and reserved memory
    //
    BuildResourceDescriptorHob (
      EFI_RESOURCE_SYSTEM_MEMORY,                       
      (
      EFI_RESOURCE_ATTRIBUTE_PRESENT |
      EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
      EFI_RESOURCE_ATTRIBUTE_TESTED |
      EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |
      EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE |
      EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE |
      EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE
      ),
      (TopLoadingAddress - TotalReservedMemorySize),                             
      TotalReservedMemorySize     
    );
    //
    // rebuild resource for the remain memory if necessary
    //
    if (CurrentResourceHob->PhysicalStart < TopLoadingAddress - TotalReservedMemorySize) {
      BuildResourceDescriptorHob (
        EFI_RESOURCE_SYSTEM_MEMORY,                       
        (
         EFI_RESOURCE_ATTRIBUTE_PRESENT |
         EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
         EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |
         EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE |
         EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE |
         EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE
         ),
         CurrentResourceHob->PhysicalStart,                             
         (TopLoadingAddress - TotalReservedMemorySize - CurrentResourceHob->PhysicalStart)      
       );
    }
    if (CurrentResourceHob->PhysicalStart + CurrentResourceHob->ResourceLength  > TopLoadingAddress ) {
      BuildResourceDescriptorHob (
        EFI_RESOURCE_SYSTEM_MEMORY,                     
        (
         EFI_RESOURCE_ATTRIBUTE_PRESENT |
         EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
         EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |
         EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE |
         EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE |
         EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE
         ),
         TopLoadingAddress,                            
         (CurrentResourceHob->PhysicalStart + CurrentResourceHob->ResourceLength  - TopLoadingAddress)     
       );
    }
    //
    // Delete CurrentHob by marking it as unused since the the memory range described by is rebuilt.
    //
    GET_HOB_TYPE (CurrentHob) = EFI_HOB_TYPE_UNUSED;         
  }

  //
  // Cache the top address for Loading Module at Fixed Address feature
  //
  PrivateData->LoadModuleAtFixAddressTopAddress = TopLoadingAddress - MINIMUM_INITIAL_MEMORY_SIZE;
  DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: Top address = 0x%lx\n",  PrivateData->LoadModuleAtFixAddressTopAddress)); 
  //
  // reinstall the PEI memory relative to TopLoadingAddress
  //
  PrivateData->PhysicalMemoryBegin   = TopLoadingAddress - TotalReservedMemorySize;
  PrivateData->FreePhysicalMemoryTop = PrivateData->PhysicalMemoryBegin + PeiMemorySize;
}
/**
  Conduct PEIM dispatch.

  @param SecCoreData     Points to a data structure containing information about the PEI core's operating
                         environment, such as the size and location of temporary RAM, the stack location and
                         the BFV location.
  @param Private         Pointer to the private data passed in from caller

**/
VOID
PeiDispatcher (
  IN CONST EFI_SEC_PEI_HAND_OFF  *SecCoreData,
  IN PEI_CORE_INSTANCE           *Private
  )
{
  EFI_STATUS                          Status;
  UINT32                              Index1;
  UINT32                              Index2;
  CONST EFI_PEI_SERVICES              **PeiServices;
  EFI_PEI_FILE_HANDLE                 PeimFileHandle;
  UINTN                               FvCount;
  UINTN                               PeimCount;
  UINT32                              AuthenticationState;
  EFI_PHYSICAL_ADDRESS                EntryPoint;
  EFI_PEIM_ENTRY_POINT2               PeimEntryPoint;
  UINTN                               SaveCurrentPeimCount;
  UINTN                               SaveCurrentFvCount;
  EFI_PEI_FILE_HANDLE                 SaveCurrentFileHandle;
  PEIM_FILE_HANDLE_EXTENDED_DATA      ExtendedData;
  EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI   *TemporaryRamSupportPpi;
  UINT64                              NewStackSize;
  EFI_PHYSICAL_ADDRESS                TopOfNewStack;
  EFI_PHYSICAL_ADDRESS                TopOfOldStack;
  EFI_PHYSICAL_ADDRESS                TemporaryRamBase;
  UINTN                               TemporaryRamSize;
  EFI_PHYSICAL_ADDRESS                TemporaryStackSize;
  UINTN                               StackOffset;
  BOOLEAN                             StackOffsetPositive;
  EFI_FV_FILE_INFO                    FvFileInfo;
  PEI_CORE_FV_HANDLE                  *CoreFvHandle;
  VOID                                *LoadFixPeiCodeBegin;

  PeiServices = (CONST EFI_PEI_SERVICES **) &Private->Ps;
  PeimEntryPoint = NULL;
  PeimFileHandle = NULL;
  EntryPoint     = 0;

  if ((Private->PeiMemoryInstalled) && (Private->HobList.HandoffInformationTable->BootMode != BOOT_ON_S3_RESUME)) {
    //
    // Once real memory is available, shadow the RegisterForShadow modules. And meanwhile
    // update the modules' status from PEIM_STATE_REGISITER_FOR_SHADOW to PEIM_STATE_DONE.
    //
    SaveCurrentPeimCount  = Private->CurrentPeimCount;
    SaveCurrentFvCount    = Private->CurrentPeimFvCount;
    SaveCurrentFileHandle =  Private->CurrentFileHandle;

    for (Index1 = 0; Index1 <= SaveCurrentFvCount; Index1++) {
      for (Index2 = 0; (Index2 < FixedPcdGet32 (PcdPeiCoreMaxPeimPerFv)) && (Private->Fv[Index1].FvFileHandles[Index2] != NULL); Index2++) {
        if (Private->Fv[Index1].PeimState[Index2] == PEIM_STATE_REGISITER_FOR_SHADOW) {
          PeimFileHandle = Private->Fv[Index1].FvFileHandles[Index2];
          Status = PeiLoadImage (
                    (CONST EFI_PEI_SERVICES **) &Private->Ps,
                    PeimFileHandle,
                    PEIM_STATE_REGISITER_FOR_SHADOW,
                    &EntryPoint,
                    &AuthenticationState
                    );
          if (Status == EFI_SUCCESS) {
            //
            // PEIM_STATE_REGISITER_FOR_SHADOW move to PEIM_STATE_DONE
            //
            Private->Fv[Index1].PeimState[Index2]++;
            Private->CurrentFileHandle   = PeimFileHandle;
            Private->CurrentPeimFvCount  = Index1;
            Private->CurrentPeimCount    = Index2;
            //
            // Call the PEIM entry point
            //
            PeimEntryPoint = (EFI_PEIM_ENTRY_POINT2)(UINTN)EntryPoint;

            PERF_START (PeimFileHandle, "PEIM", NULL, 0);
            PeimEntryPoint(PeimFileHandle, (const EFI_PEI_SERVICES **) &Private->Ps);
            PERF_END (PeimFileHandle, "PEIM", NULL, 0);
          }

          //
          // Process the Notify list and dispatch any notifies for
          // newly installed PPIs.
          //
          ProcessNotifyList (Private);
        }
      }
    }
    Private->CurrentFileHandle  = SaveCurrentFileHandle;
    Private->CurrentPeimFvCount = SaveCurrentFvCount;
    Private->CurrentPeimCount   = SaveCurrentPeimCount;
  }

  //
  // This is the main dispatch loop.  It will search known FVs for PEIMs and
  // attempt to dispatch them.  If any PEIM gets dispatched through a single
  // pass of the dispatcher, it will start over from the Bfv again to see
  // if any new PEIMs dependencies got satisfied.  With a well ordered
  // FV where PEIMs are found in the order their dependencies are also
  // satisfied, this dipatcher should run only once.
  //
  do {
    //
    // In case that reenter PeiCore happens, the last pass record is still available.   
    //
    if (!Private->PeimDispatcherReenter) {
      Private->PeimNeedingDispatch      = FALSE;
      Private->PeimDispatchOnThisPass   = FALSE;
    } else {
      Private->PeimDispatcherReenter    = FALSE;
    }
    
    for (FvCount = Private->CurrentPeimFvCount; FvCount < Private->FvCount; FvCount++) {
      CoreFvHandle = FindNextCoreFvHandle (Private, FvCount);
      ASSERT (CoreFvHandle != NULL);
      
      //
      // If the FV has corresponding EFI_PEI_FIRMWARE_VOLUME_PPI instance, then dispatch it.
      //
      if (CoreFvHandle->FvPpi == NULL) {
        continue;
      }
      
      Private->CurrentPeimFvCount = FvCount;

      if (Private->CurrentPeimCount == 0) {
        //
        // When going through each FV, at first, search Apriori file to
        // reorder all PEIMs to ensure the PEIMs in Apriori file to get
        // dispatch at first.
        //
        DiscoverPeimsAndOrderWithApriori (Private, CoreFvHandle);
      }

      //
      // Start to dispatch all modules within the current Fv.
      //
      for (PeimCount = Private->CurrentPeimCount;
           (PeimCount < FixedPcdGet32 (PcdPeiCoreMaxPeimPerFv)) && (Private->CurrentFvFileHandles[PeimCount] != NULL);
           PeimCount++) {
        Private->CurrentPeimCount  = PeimCount;
        PeimFileHandle = Private->CurrentFileHandle = Private->CurrentFvFileHandles[PeimCount];

        if (Private->Fv[FvCount].PeimState[PeimCount] == PEIM_STATE_NOT_DISPATCHED) {
          if (!DepexSatisfied (Private, PeimFileHandle, PeimCount)) {
            Private->PeimNeedingDispatch = TRUE;
          } else {
            Status = CoreFvHandle->FvPpi->GetFileInfo (CoreFvHandle->FvPpi, PeimFileHandle, &FvFileInfo);
            ASSERT_EFI_ERROR (Status);
            if (FvFileInfo.FileType == EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE) {
              //
              // For Fv type file, Produce new FV PPI and FV hob
              //
              Status = ProcessFvFile (&Private->Fv[FvCount], PeimFileHandle);
              AuthenticationState = 0;
            } else {
              //
              // For PEIM driver, Load its entry point
              //
              Status = PeiLoadImage (
                         PeiServices,
                         PeimFileHandle,
                         PEIM_STATE_NOT_DISPATCHED,
                         &EntryPoint,
                         &AuthenticationState
                         );
            }

            if (Status == EFI_SUCCESS) {
              //
              // The PEIM has its dependencies satisfied, and its entry point
              // has been found, so invoke it.
              //
              PERF_START (PeimFileHandle, "PEIM", NULL, 0);

              ExtendedData.Handle = (EFI_HANDLE)PeimFileHandle;

              REPORT_STATUS_CODE_WITH_EXTENDED_DATA (
                EFI_PROGRESS_CODE,
                (EFI_SOFTWARE_PEI_CORE | EFI_SW_PC_INIT_BEGIN),
                (VOID *)(&ExtendedData),
                sizeof (ExtendedData)
                );

              Status = VerifyPeim (Private, CoreFvHandle->FvHandle, PeimFileHandle);
              if (Status != EFI_SECURITY_VIOLATION && (AuthenticationState == 0)) {
                //
                // PEIM_STATE_NOT_DISPATCHED move to PEIM_STATE_DISPATCHED
                //
                Private->Fv[FvCount].PeimState[PeimCount]++;

                if (FvFileInfo.FileType != EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE) {
                  //
                  // Call the PEIM entry point for PEIM driver
                  //
                  PeimEntryPoint = (EFI_PEIM_ENTRY_POINT2)(UINTN)EntryPoint;
                  PeimEntryPoint (PeimFileHandle, (const EFI_PEI_SERVICES **) PeiServices);
                }

                Private->PeimDispatchOnThisPass = TRUE;
              }

              REPORT_STATUS_CODE_WITH_EXTENDED_DATA (
                EFI_PROGRESS_CODE,
                (EFI_SOFTWARE_PEI_CORE | EFI_SW_PC_INIT_END),
                (VOID *)(&ExtendedData),
                sizeof (ExtendedData)
                );
              PERF_END (PeimFileHandle, "PEIM", NULL, 0);

            }

            if (Private->SwitchStackSignal) {
              //
              // Before switch stack from temporary memory to permenent memory, caculate the heap and stack
              // usage in temporary memory for debuging.
              //
              DEBUG_CODE_BEGIN ();
                UINT32  *StackPointer;
                
                for (StackPointer = (UINT32*)SecCoreData->StackBase;
                     (StackPointer < (UINT32*)((UINTN)SecCoreData->StackBase + SecCoreData->StackSize)) \
                     && (*StackPointer == INIT_CAR_VALUE);
                     StackPointer ++);
                     
                DEBUG ((EFI_D_INFO, "Temp Stack : BaseAddress=0x%p Length=0x%X\n", SecCoreData->StackBase, (UINT32)SecCoreData->StackSize));
                DEBUG ((EFI_D_INFO, "Temp Heap  : BaseAddress=0x%p Length=0x%X\n", Private->HobList.Raw, (UINT32)((UINTN) Private->HobList.HandoffInformationTable->EfiFreeMemoryBottom - (UINTN) Private->HobList.Raw)));
                DEBUG ((EFI_D_INFO, "Total temporary memory:    %d bytes.\n", (UINT32)SecCoreData->TemporaryRamSize));
                DEBUG ((EFI_D_INFO, "  temporary memory stack ever used: %d bytes.\n",
                       (UINT32)(SecCoreData->StackSize - ((UINTN) StackPointer - (UINTN)SecCoreData->StackBase))
                      ));
                DEBUG ((EFI_D_INFO, "  temporary memory heap used:       %d bytes.\n",
                       (UINT32)((UINTN)Private->HobList.HandoffInformationTable->EfiFreeMemoryBottom - (UINTN)Private->HobList.Raw)
                      ));
              DEBUG_CODE_END ();
              
              if (PcdGet64(PcdLoadModuleAtFixAddressEnable) != 0 && (Private->HobList.HandoffInformationTable->BootMode != BOOT_ON_S3_RESUME)) {
                //
                // Loading Module at Fixed Address is enabled
                //
                PeiLoadFixAddressHook (Private);

                //
                // If Loading Module at Fixed Address is enabled, Allocating memory range for Pei code range.
                //
                LoadFixPeiCodeBegin = AllocatePages((UINTN)PcdGet32(PcdLoadFixAddressPeiCodePageNumber));
                DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: PeiCodeBegin = 0x%lX, PeiCodeTop= 0x%lX\n", (UINT64)(UINTN)LoadFixPeiCodeBegin, (UINT64)((UINTN)LoadFixPeiCodeBegin + PcdGet32(PcdLoadFixAddressPeiCodePageNumber) * EFI_PAGE_SIZE)));
              }
              
              //
              // Reserve the size of new stack at bottom of physical memory
              //
              // The size of new stack in permenent memory must be the same size 
              // or larger than the size of old stack in temporary memory.
              // But if new stack is smaller than the size of old stack, we also reserve
              // the size of old stack at bottom of permenent memory.
              //
              NewStackSize = RShiftU64 (Private->PhysicalMemoryLength, 1);
              NewStackSize = ALIGN_VALUE (NewStackSize, EFI_PAGE_SIZE);
              NewStackSize = MIN (PcdGet32(PcdPeiCoreMaxPeiStackSize), NewStackSize);
              DEBUG ((EFI_D_INFO, "Old Stack size %d, New stack size %d\n", (UINT32)SecCoreData->StackSize, (UINT32)NewStackSize));
              ASSERT (NewStackSize >= SecCoreData->StackSize);

              //
              // Caculate stack offset and heap offset between temporary memory and new permement 
              // memory seperately.
              //
              TopOfOldStack = (UINTN)SecCoreData->StackBase + SecCoreData->StackSize;
              TopOfNewStack = Private->PhysicalMemoryBegin + NewStackSize;
              if (TopOfNewStack >= (UINTN)SecCoreData->PeiTemporaryRamBase) {
                Private->HeapOffsetPositive = TRUE;
                Private->HeapOffset = (UINTN)(TopOfNewStack - (UINTN)SecCoreData->PeiTemporaryRamBase);
              } else {
                Private->HeapOffsetPositive = FALSE;
                Private->HeapOffset = (UINTN)((UINTN)SecCoreData->PeiTemporaryRamBase - TopOfNewStack);
              }
              if (TopOfNewStack >= TopOfOldStack) {
                StackOffsetPositive = TRUE;
                StackOffset = (UINTN)(TopOfNewStack - TopOfOldStack);
              } else {
                StackOffsetPositive = FALSE;
                StackOffset = (UINTN)(TopOfOldStack - TopOfNewStack);
              }
              Private->StackOffsetPositive = StackOffsetPositive;
              Private->StackOffset = StackOffset;

              DEBUG ((EFI_D_INFO, "Heap Offset = 0x%lX Stack Offset = 0x%lX\n", (UINT64)Private->HeapOffset, (UINT64)(StackOffset)));

              //
              // Build Stack HOB that describes the permanent memory stack
              //
              DEBUG ((EFI_D_INFO, "Stack Hob: BaseAddress=0x%lX Length=0x%lX\n", TopOfNewStack - NewStackSize, NewStackSize));
              BuildStackHob (TopOfNewStack - NewStackSize, NewStackSize);

              //
              // Cache information from SecCoreData into locals before SecCoreData is converted to a permanent memory address
              //
              TemporaryRamBase   = (EFI_PHYSICAL_ADDRESS)(UINTN)SecCoreData->TemporaryRamBase;
              TemporaryRamSize   = SecCoreData->TemporaryRamSize;
              TemporaryStackSize = SecCoreData->StackSize;

              //
              // Caculate new HandOffTable and PrivateData address in permanent memory's stack
              //
              if (StackOffsetPositive) {
                SecCoreData = (CONST EFI_SEC_PEI_HAND_OFF *)((UINTN)(VOID *)SecCoreData + StackOffset);
                Private = (PEI_CORE_INSTANCE *)((UINTN)(VOID *)Private + StackOffset);
              } else {
                SecCoreData = (CONST EFI_SEC_PEI_HAND_OFF *)((UINTN)(VOID *)SecCoreData - StackOffset);
                Private = (PEI_CORE_INSTANCE *)((UINTN)(VOID *)Private - StackOffset);
              }

              //
              // TemporaryRamSupportPpi is produced by platform's SEC
              //
              Status = PeiServicesLocatePpi (
                         &gEfiTemporaryRamSupportPpiGuid,
                         0,
                         NULL,
                         (VOID**)&TemporaryRamSupportPpi
                         );
              if (!EFI_ERROR (Status)) {
                //
                // Temporary Ram Support PPI is provided by platform, it will copy 
                // temporary memory to permenent memory and do stack switching.
                // After invoking Temporary Ram Support PPI, the following code's 
                // stack is in permanent memory.
                //
                TemporaryRamSupportPpi->TemporaryRamMigration (
                                          PeiServices,
                                          TemporaryRamBase,
                                          (EFI_PHYSICAL_ADDRESS)(UINTN)(TopOfNewStack - TemporaryStackSize),
                                          TemporaryRamSize
                                          );

              } else {
                //
                // In IA32/x64/Itanium architecture, we need platform provide
                // TEMPORARY_RAM_MIGRATION_PPI.
                //
                ASSERT (FALSE);
              }

              //
              // Entry PEI Phase 2
              //
              PeiCore (SecCoreData, NULL, Private);

              //
              // Code should not come here
              //
              ASSERT (FALSE);
            }

            //
            // Process the Notify list and dispatch any notifies for
            // newly installed PPIs.
            //
            ProcessNotifyList (Private);

            if ((Private->PeiMemoryInstalled) && (Private->Fv[FvCount].PeimState[PeimCount] == PEIM_STATE_REGISITER_FOR_SHADOW) &&   \
                (Private->HobList.HandoffInformationTable->BootMode != BOOT_ON_S3_RESUME)) {
              //
              // If memory is availble we shadow images by default for performance reasons.
              // We call the entry point a 2nd time so the module knows it's shadowed.
              //
              //PERF_START (PeiServices, L"PEIM", PeimFileHandle, 0);
              ASSERT (PeimEntryPoint != NULL);
              PeimEntryPoint (PeimFileHandle, (const EFI_PEI_SERVICES **) PeiServices);
              //PERF_END (PeiServices, L"PEIM", PeimFileHandle, 0);

              //
              // PEIM_STATE_REGISITER_FOR_SHADOW move to PEIM_STATE_DONE
              //
              Private->Fv[FvCount].PeimState[PeimCount]++;

              //
              // Process the Notify list and dispatch any notifies for
              // newly installed PPIs.
              //
              ProcessNotifyList (Private);
            }
          }
        }
      }

      //
      // We set to NULL here to optimize the 2nd entry to this routine after
      //  memory is found. This reprevents rescanning of the FV. We set to
      //  NULL here so we start at the begining of the next FV
      //
      Private->CurrentFileHandle = NULL;
      Private->CurrentPeimCount = 0;
      //
      // Before walking through the next FV,Private->CurrentFvFileHandles[]should set to NULL
      //
      SetMem (Private->CurrentFvFileHandles, sizeof (Private->CurrentFvFileHandles), 0);
    }

    //
    // Before making another pass, we should set Private->CurrentPeimFvCount =0 to go
    // through all the FV.
    //
    Private->CurrentPeimFvCount = 0;

    //
    // PeimNeedingDispatch being TRUE means we found a PEIM that did not get
    //  dispatched. So we need to make another pass
    //
    // PeimDispatchOnThisPass being TRUE means we dispatched a PEIM on this
    //  pass. If we did not dispatch a PEIM there is no point in trying again
    //  as it will fail the next time too (nothing has changed).
    //
  } while (Private->PeimNeedingDispatch && Private->PeimDispatchOnThisPass);

}

/**
  Initialize the Dispatcher's data members

  @param PrivateData     PeiCore's private data structure
  @param OldCoreData     Old data from SecCore
                         NULL if being run in non-permament memory mode.
  @param SecCoreData     Points to a data structure containing information about the PEI core's operating
                         environment, such as the size and location of temporary RAM, the stack location and
                         the BFV location.

  @return None.

**/
VOID
InitializeDispatcherData (
  IN PEI_CORE_INSTANCE            *PrivateData,
  IN PEI_CORE_INSTANCE            *OldCoreData,
  IN CONST EFI_SEC_PEI_HAND_OFF   *SecCoreData
  )
{
  if (OldCoreData == NULL) {
    PrivateData->PeimDispatcherReenter = FALSE;
    PeiInitializeFv (PrivateData, SecCoreData);
  } else {
    PeiReinitializeFv (PrivateData);
  }

  return;
}

/**
  This routine parses the Dependency Expression, if available, and
  decides if the module can be executed.


  @param Private         PeiCore's private data structure
  @param FileHandle      PEIM's file handle
  @param PeimCount       Peim count in all dispatched PEIMs.

  @retval TRUE   Can be dispatched
  @retval FALSE  Cannot be dispatched

**/
BOOLEAN
DepexSatisfied (
  IN PEI_CORE_INSTANCE          *Private,
  IN EFI_PEI_FILE_HANDLE        FileHandle,
  IN UINTN                      PeimCount
  )
{
  EFI_STATUS           Status;
  VOID                 *DepexData;
  EFI_FV_FILE_INFO     FileInfo;

  Status = PeiServicesFfsGetFileInfo (FileHandle, &FileInfo);
  if (EFI_ERROR (Status)) {
    DEBUG ((DEBUG_DISPATCH, "Evaluate PEI DEPEX for FFS(Unknown)\n"));
  } else {
    DEBUG ((DEBUG_DISPATCH, "Evaluate PEI DEPEX for FFS(%g)\n", &FileInfo.FileName));
  }
  
  if (PeimCount < Private->AprioriCount) {
    //
    // If its in the A priori file then we set Depex to TRUE
    //
    DEBUG ((DEBUG_DISPATCH, "  RESULT = TRUE (Apriori)\n"));
    return TRUE;
  }

  //
  // Depex section not in the encapsulated section.
  //
  Status = PeiServicesFfsFindSectionData (
              EFI_SECTION_PEI_DEPEX,
              FileHandle,
              (VOID **)&DepexData
              );

  if (EFI_ERROR (Status)) {
    //
    // If there is no DEPEX, assume the module can be executed
    //
    DEBUG ((DEBUG_DISPATCH, "  RESULT = TRUE (No DEPEX)\n"));
    return TRUE;
  }

  //
  // Evaluate a given DEPEX
  //
  return PeimDispatchReadiness (&Private->Ps, DepexData);
}

/**
  This routine enable a PEIM to register itself to shadow when PEI Foundation
  discovery permanent memory.

  @param FileHandle             File handle of a PEIM.

  @retval EFI_NOT_FOUND         The file handle doesn't point to PEIM itself.
  @retval EFI_ALREADY_STARTED   Indicate that the PEIM has been registered itself.
  @retval EFI_SUCCESS           Successfully to register itself.

**/
EFI_STATUS
EFIAPI
PeiRegisterForShadow (
  IN EFI_PEI_FILE_HANDLE       FileHandle
  )
{
  PEI_CORE_INSTANCE            *Private;
  Private = PEI_CORE_INSTANCE_FROM_PS_THIS (GetPeiServicesTablePointer ());

  if (Private->CurrentFileHandle != FileHandle) {
    //
    // The FileHandle must be for the current PEIM
    //
    return EFI_NOT_FOUND;
  }

  if (Private->Fv[Private->CurrentPeimFvCount].PeimState[Private->CurrentPeimCount] >= PEIM_STATE_REGISITER_FOR_SHADOW) {
    //
    // If the PEIM has already entered the PEIM_STATE_REGISTER_FOR_SHADOW or PEIM_STATE_DONE then it's already been started
    //
    return EFI_ALREADY_STARTED;
  }

  Private->Fv[Private->CurrentPeimFvCount].PeimState[Private->CurrentPeimCount] = PEIM_STATE_REGISITER_FOR_SHADOW;

  return EFI_SUCCESS;
}