summaryrefslogtreecommitdiff
path: root/arch/arm/mach-omap2/dvfs.c
blob: d5d3e2a8fa3bee8b6bfc814c011e11eb65007ecf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
/*
 * OMAP3/OMAP4 DVFS Management Routines
 *
 * Author: Vishwanath BS <vishwanath.bs@ti.com>
 *
 * Copyright (C) 2011 Texas Instruments, Inc.
 * Vishwanath BS <vishwanath.bs@ti.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/module.h>
#include <linux/err.h>
#include <linux/spinlock.h>
#include <linux/plist.h>
#include <linux/slab.h>
#include <linux/opp.h>
#include <linux/clk.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <plat/common.h>
#include <plat/omap_device.h>
#include <plat/omap_hwmod.h>
#include <plat/clock.h>
#include "dvfs.h"
#include "smartreflex.h"
#include "powerdomain.h"
#include "pm.h"

/**
 * DOC: Introduction
 * =================
 * DVFS is a technique that uses the optimal operating frequency and voltage to
 * allow a task to be performed in the required amount of time.
 * OMAP processors have voltage domains whose voltage can be scaled to
 * various levels depending on which the operating frequencies of certain
 * devices belonging to the domain will also need to be scaled. This voltage
 * frequency tuple is known as Operating Performance Point (OPP). A device
 * can have multiple OPP's. Also a voltage domain could be shared between
 * multiple devices. Also there could be dependencies between various
 * voltage domains for maintaining system performance like VDD<X>
 * should be at voltage v1 when VDD<Y> is at voltage v2.
 *
 * The design of this framework takes into account all the above mentioned
 * points. To summarize the basic design of DVFS framework:-
 *
 * 1. Have device opp tables for each device whose operating frequency can be
 *    scaled. This is easy now due to the existance of hwmod layer which
 *    allow storing of device specific info. The device opp tables contain
 *    the opp pairs (frequency voltage tuples), the voltage domain pointer
 *    to which the device belongs to, the device specific set_rate and
 *    get_rate API's which will do the actual scaling of the device frequency
 *    and retrieve the current device frequency.
 * 2. Introduce use counting on a per VDD basis. This is to take care multiple
 *    requests to scale a VDD. The VDD will be scaled to the maximum of the
 *    voltages requested.
 * 3. Keep track of all scalable devices belonging to a particular voltage
 *    domain the voltage layer.
 * 4. Keep track of frequency requests for each of the device. This will enable
 *    to scale individual devices to different frequency (even w/o scaling
 *    voltage aka frequency throttling)
 * 5. Generic dvfs API that can be called by anybody to scale a device opp.
 *    This API takes the device pointer and frequency to which the device
 *    needs to be scaled to. This API then internally finds out the voltage
 *    domain to which the device belongs to and the voltage to which the voltage
 *    domain needs to be put to for the device to be scaled to the new frequency
 *    from he device opp table. Then this API will add requested frequency into
 *    the corresponding target device frequency list and add voltage request to
 *    the corresponding vdd. Subsequently it calls voltage scale function which
 *    will find out the highest requested voltage for the given vdd and scales
 *    the voltage to the required one. It also runs through the list of all
 *    scalable devices belonging to this voltage domain and scale them to the
 *    appropriate frequencies using the set_rate pointer in the device opp
 *    tables.
 * 6. Handle inter VDD dependecies.
 *
 *
 * DOC: The Core DVFS data structure:
 * ==================================
 *  Structure Name                   Example Tree
 *  ---------
 *    /|\         +-------------------+      +-------------------+
 *     |          |User2 (dev2, freq2)+---\  |User4 (dev4, freq4)+---\
 *     |          +-------------------+   |  +-------------------+   |
 * (struct omap_dev_user_list)            |                          |
 *     |          +-------------------+   |  +-------------------+   |
 *     |          |User1 (dev1, freq1)+---|  |User3 (dev3, freq3)+---|
 *    \|/         +-------------------+   |  +-------------------+   |
 *  ---------                             |                          |
 *    /|\                    +------------+------+   +---------------+--+
 *     |                     | DEV1 (dev,        |   | DEV2 (dev)       |
 * (struct omap_vdd_dev_list)|omap_dev_user_list)|   |omap_dev_user_list|
 *     |                     +------------+------+   +--+---------------+
 *    \|/           /|\             /-----+-------------+------> others..
 *  ---------    Frequency          |
 *    /|\                        +--+------------------+
 *     |                         |       VDD_n         |
 *     |                         | (omap_vdd_dev_list, |
 * (struct omap_vdd_dvfs_info)** | omap_vdd_user_list) |
 *     |                         +--+------------------+
 *     |                            |   (ROOT NODE: omap_dvfs_info_list)
 *    \|/                           |
 *  ---------    Voltage            \---+-------------+----------> others..
 *    /|\          \|/          +-------+----+  +-----+--------+
 *     |                        |  vdd_user2 |  |   vdd_user3  |
 * (struct omap_vdd_user_list)  | (dev, volt)|  | (dev, volt)  |
 *    \|/                       +------------+  +--------------+
 *  ---------
 * Key: ** -> Root of the tree.
 * NOTE: we use the priority to store the voltage/frequency
 *
 * For voltage dependency description, see: struct dependency:
 * voltagedomain -> (description of the voltagedomain)
 *	omap_vdd_info -> (vdd information)
 *		omap_vdd_dep_info[]-> (stores array of depedency info)
 *			omap_vdd_dep_volt[] -> (stores array of maps)
 *				(main_volt -> dep_volt) (a singular map)
 */

/* Macros to give idea about scaling directions */
#define DVFS_VOLT_SCALE_DOWN	0
#define DVFS_VOLT_SCALE_NONE	1
#define DVFS_VOLT_SCALE_UP	2

/**
 * struct omap_dev_user_list - Structure maitain userlist per devide
 * @dev:	The device requesting for a particular frequency
 * @node:	The list head entry
 *
 * Using this structure, user list (requesting dev * and frequency) for
 * each device is maintained. This is how we can have different devices
 * at different frequencies (to support frequency locking and throttling).
 * Even if one of the devices in a given vdd has locked it's frequency,
 * other's can still scale their frequency using this list.
 * If no one has placed a frequency request for a device, then device is
 * set to the frequency from it's opp table.
 */
struct omap_dev_user_list {
	struct device *dev;
	struct plist_node node;
};

/**
 * struct omap_vdd_dev_list - Device list per vdd
 * @dev:	The device belonging to a particular vdd
 * @node:	The list head entry
 * @freq_user_list: The list of users for vdd device
 * @clk:	frequency control clock for this dev
 * @user_lock:	The lock for plist manipulation
 */
struct omap_vdd_dev_list {
	struct device *dev;
	struct list_head node;
	struct plist_head freq_user_list;
	struct clk *clk;
	spinlock_t user_lock; /* spinlock for plist */
};

/**
 * struct omap_vdd_user_list - The per vdd user list
 * @dev:	The device asking for the vdd to be set at a particular
 *		voltage
 * @node:	The list head entry
 */
struct omap_vdd_user_list {
	struct device *dev;
	struct plist_node node;
};

/**
 * struct omap_vdd_dvfs_info - The per vdd dvfs info
 * @node:	list node for vdd_dvfs_info list
 * @user_lock:	spinlock for plist operations
 * @vdd_user_list: The vdd user list
 * @voltdm:	Voltage domains for which dvfs info stored
 * @dev_list:	Device list maintained per domain
 * @is_scaling: flag to store information about scaling in progress or not
 *		this flag is already protected by the global mutex.
 *
 * This is a fundamental structure used to store all the required
 * DVFS related information for a vdd.
 */
struct omap_vdd_dvfs_info {
	struct list_head node;

	spinlock_t user_lock; /* spin lock */
	struct plist_head vdd_user_list;
	struct voltagedomain *voltdm;
	struct list_head dev_list;
};

static LIST_HEAD(omap_dvfs_info_list);
DEFINE_MUTEX(omap_dvfs_lock);

/* Dvfs scale helper function */
static int _dvfs_scale(struct device *req_dev, struct device *target_dev,
		struct omap_vdd_dvfs_info *tdvfs_info);

/* Few search functions to traverse and find pointers of interest */

/**
 * _dvfs_info_to_dev() - Locate the parent device associated to dvfs_info
 * @dvfs_info:	dvfs_info to search for
 *
 * Returns NULL on failure.
 */
static struct device *_dvfs_info_to_dev(struct omap_vdd_dvfs_info *dvfs_info)
{
	struct omap_vdd_dev_list *tmp_dev;
	if (IS_ERR_OR_NULL(dvfs_info))
		return NULL;
	if (list_empty(&dvfs_info->dev_list))
		return NULL;
	tmp_dev = list_first_entry(&dvfs_info->dev_list,
					struct omap_vdd_dev_list, node);
	return tmp_dev->dev;
}

/**
 * _dev_to_dvfs_info() - Locate the dvfs_info for a device
 * @dev:	dev to search for
 *
 * Returns NULL on failure.
 */
static struct omap_vdd_dvfs_info *_dev_to_dvfs_info(struct device *dev)
{
	struct omap_vdd_dvfs_info *dvfs_info;
	struct omap_vdd_dev_list *temp_dev;

	if (IS_ERR_OR_NULL(dev))
		return NULL;

	list_for_each_entry(dvfs_info, &omap_dvfs_info_list, node) {
		list_for_each_entry(temp_dev, &dvfs_info->dev_list, node) {
			if (temp_dev->dev == dev)
				return dvfs_info;
		}
	}

	return NULL;
}

/**
 * _voltdm_to_dvfs_info() - Locate a dvfs_info given a voltdm pointer
 * @voltdm:	voltdm to search for
 *
 * Returns NULL on failure.
 */
static
struct omap_vdd_dvfs_info *_voltdm_to_dvfs_info(struct voltagedomain *voltdm)
{
	struct omap_vdd_dvfs_info *dvfs_info;

	if (IS_ERR_OR_NULL(voltdm))
		return NULL;

	list_for_each_entry(dvfs_info, &omap_dvfs_info_list, node) {
		if (dvfs_info->voltdm == voltdm)
			return dvfs_info;
	}

	return NULL;
}

/**
 * _volt_to_opp() - Find OPP corresponding to a given voltage
 * @dev:	device pointer associated with the OPP list
 * @volt:	voltage to search for in uV
 *
 * Searches for exact match in the OPP list and returns handle to the matching
 * OPP if found, else return the max available OPP.
 * If there are multiple opps with same voltage, it will return
 * the first available entry. Return pointer should be checked against IS_ERR.
 *
 * NOTE: since this uses OPP functions, use under rcu_lock. This function also
 * assumes that the cpufreq table and OPP table are in sync - any modifications
 * to either should be synchronized.
 */
static struct opp *_volt_to_opp(struct device *dev, unsigned long volt)
{
	struct opp *opp = ERR_PTR(-ENODEV);
	unsigned long f = 0;

	do {
		opp = opp_find_freq_ceil(dev, &f);
		if (IS_ERR(opp)) {
			/*
			 * if there is no OPP for corresponding volt
			 * then return max available instead
			 */
			opp = opp_find_freq_floor(dev, &f);
			break;
		}
		if (opp_get_voltage(opp) >= volt)
			break;
		f++;
	} while (1);

	return opp;
}

/* rest of the helper functions */
/**
 * _add_vdd_user() - Add a voltage request
 * @dvfs_info:	omap_vdd_dvfs_info pointer for the required vdd
 * @dev:	device making the request
 * @volt:	requested voltage in uV
 *
 * Adds the given device's voltage request into corresponding
 * vdd's omap_vdd_dvfs_info user list (plist). This list is used
 * to find the maximum voltage request for a given vdd.
 *
 * Returns 0 on success.
 */
static int _add_vdd_user(struct omap_vdd_dvfs_info *dvfs_info,
			struct device *dev, unsigned long volt)
{
	struct omap_vdd_user_list *user = NULL, *temp_user;

	if (!dvfs_info || IS_ERR(dvfs_info)) {
		dev_warn(dev, "%s: VDD specified does not exist!\n", __func__);
		return -EINVAL;
	}

	spin_lock(&dvfs_info->user_lock);
	plist_for_each_entry(temp_user, &dvfs_info->vdd_user_list, node) {
		if (temp_user->dev == dev) {
			user = temp_user;
			break;
		}
	}

	if (!user) {
		user = kzalloc(sizeof(struct omap_vdd_user_list), GFP_ATOMIC);
		if (!user) {
			dev_err(dev,
				"%s: Unable to creat a new user for vdd_%s\n",
				__func__, dvfs_info->voltdm->name);
			spin_unlock(&dvfs_info->user_lock);
			return -ENOMEM;
		}
		user->dev = dev;
	} else {
		plist_del(&user->node, &dvfs_info->vdd_user_list);
	}

	plist_node_init(&user->node, volt);
	plist_add(&user->node, &dvfs_info->vdd_user_list);

	spin_unlock(&dvfs_info->user_lock);
	return 0;
}

/**
 * _remove_vdd_user() - Remove a voltage request
 * @dvfs_info:	omap_vdd_dvfs_info pointer for the required vdd
 * @dev:	device making the request
 *
 * Removes the given device's voltage request from corresponding
 * vdd's omap_vdd_dvfs_info user list (plist).
 *
 * Returns 0 on success.
 */
static int _remove_vdd_user(struct omap_vdd_dvfs_info *dvfs_info,
		struct device *dev)
{
	struct omap_vdd_user_list *user = NULL, *temp_user;
	int ret = 0;

	if (!dvfs_info || IS_ERR(dvfs_info)) {
		dev_err(dev, "%s: VDD specified does not exist!\n", __func__);
		return -EINVAL;
	}

	spin_lock(&dvfs_info->user_lock);
	plist_for_each_entry(temp_user, &dvfs_info->vdd_user_list, node) {
		if (temp_user->dev == dev) {
			user = temp_user;
			break;
		}
	}

	if (user)
		plist_del(&user->node, &dvfs_info->vdd_user_list);
	else {
		dev_err(dev, "%s: Unable to find the user for vdd_%s\n",
					__func__, dvfs_info->voltdm->name);
		ret = -ENOENT;
	}

	spin_unlock(&dvfs_info->user_lock);
	kfree(user);

	return ret;
}

/**
 * _add_freq_request() - Add a requested device frequency
 * @dvfs_info:	omap_vdd_dvfs_info pointer for the required vdd
 * @req_dev:	device making the request
 * @target_dev:	target device for which frequency request is being made
 * @freq:	target device frequency
 *
 * This adds a requested frequency into target device's frequency list.
 *
 * Returns 0 on success.
 */
static int _add_freq_request(struct omap_vdd_dvfs_info *dvfs_info,
	struct device *req_dev, struct device *target_dev, unsigned long freq)
{
	struct omap_dev_user_list *dev_user = NULL, *tmp_user;
	struct omap_vdd_dev_list *temp_dev;

	if (!dvfs_info || IS_ERR(dvfs_info)) {
		dev_warn(target_dev, "%s: VDD specified does not exist!\n",
			__func__);
		return -EINVAL;
	}

	list_for_each_entry(temp_dev, &dvfs_info->dev_list, node) {
		if (temp_dev->dev == target_dev)
			break;
	}

	if (temp_dev->dev != target_dev) {
		dev_warn(target_dev, "%s: target_dev does not exist!\n",
			__func__);
		return -EINVAL;
	}

	spin_lock(&temp_dev->user_lock);
	plist_for_each_entry(tmp_user, &temp_dev->freq_user_list, node) {
		if (tmp_user->dev == req_dev) {
			dev_user = tmp_user;
			break;
		}
	}

	if (!dev_user) {
		dev_user = kzalloc(sizeof(struct omap_dev_user_list),
					GFP_ATOMIC);
		if (!dev_user) {
			dev_err(target_dev,
				"%s: Unable to creat a new user for vdd_%s\n",
				__func__, dvfs_info->voltdm->name);
			spin_unlock(&temp_dev->user_lock);
			return -ENOMEM;
		}
		dev_user->dev = req_dev;
	} else {
		plist_del(&dev_user->node, &temp_dev->freq_user_list);
	}

	plist_node_init(&dev_user->node, freq);
	plist_add(&dev_user->node, &temp_dev->freq_user_list);
	spin_unlock(&temp_dev->user_lock);
	return 0;
}

/**
 * _remove_freq_request() - Remove the requested device frequency
 *
 * @dvfs_info:	omap_vdd_dvfs_info pointer for the required vdd
 * @req_dev:	device removing the request
 * @target_dev:	target device from which frequency request is being removed
 *
 * This removes a requested frequency from target device's frequency list.
 *
 * Returns 0 on success.
 */
static int _remove_freq_request(struct omap_vdd_dvfs_info *dvfs_info,
	struct device *req_dev, struct device *target_dev)
{
	struct omap_dev_user_list *dev_user = NULL, *tmp_user;
	int ret = 0;
	struct omap_vdd_dev_list *temp_dev;

	if (!dvfs_info || IS_ERR(dvfs_info)) {
		dev_warn(target_dev, "%s: VDD specified does not exist!\n",
			__func__);
		return -EINVAL;
	}


	list_for_each_entry(temp_dev, &dvfs_info->dev_list, node) {
		if (temp_dev->dev == target_dev)
			break;
	}

	if (temp_dev->dev != target_dev) {
		dev_warn(target_dev, "%s: target_dev does not exist!\n",
			__func__);
		return -EINVAL;
	}

	spin_lock(&temp_dev->user_lock);
	plist_for_each_entry(tmp_user, &temp_dev->freq_user_list, node) {
		if (tmp_user->dev == req_dev) {
			dev_user = tmp_user;
			break;
		}
	}

	if (dev_user) {
		plist_del(&dev_user->node, &temp_dev->freq_user_list);
	} else {
		dev_err(target_dev,
			"%s: Unable to remove the user for vdd_%s\n",
			__func__, dvfs_info->voltdm->name);
		ret = -EINVAL;
	}

	spin_unlock(&temp_dev->user_lock);
	kfree(dev_user);

	return ret;
}

/**
 * _dep_scan_table() - Scan a dependency table and mark for scaling
 * @dev:	device requesting the dependency scan (req_dev)
 * @dep_info:	dependency information (contains the table)
 * @main_volt:	voltage dependency to search for
 *
 * This runs down the table provided to find the match for main_volt
 * provided and sets up a scale request for the dependent domain
 * for the dependent voltage.
 *
 * Returns 0 if all went well.
 */
static int _dep_scan_table(struct device *dev,
		struct omap_vdd_dep_info *dep_info, unsigned long main_volt)
{
	struct omap_vdd_dep_volt *dep_table = dep_info->dep_table;
	int i;
	unsigned long dep_volt = 0;

	if (!dep_table) {
		dev_err(dev, "%s: deptable not present for vdd%s\n",
			__func__, dep_info->name);
		return -EINVAL;
	}

	/* Now scan through the the dep table for a match */
	for (i = 0; i < dep_info->nr_dep_entries; i++) {
		if (dep_table[i].main_vdd_volt == main_volt) {
			dep_volt = dep_table[i].dep_vdd_volt;
			break;
		}
	}
	if (!dep_volt) {
		dev_warn(dev, "%s: %ld volt map missing in vdd_%s\n",
			__func__, main_volt, dep_info->name);
		return -EINVAL;
	}

	/* populate voltdm if it is not present */
	if (!dep_info->_dep_voltdm) {
		dep_info->_dep_voltdm = voltdm_lookup(dep_info->name);
		if (!dep_info->_dep_voltdm) {
			dev_warn(dev, "%s: unable to get vdm%s\n",
				__func__, dep_info->name);
			return -ENODEV;
		}
	}

	/* See if dep_volt is possible for the vdd*/
	i = _add_vdd_user(_voltdm_to_dvfs_info(dep_info->_dep_voltdm),
			dev, dep_volt);
	if (i)
		dev_err(dev, "%s: Failed to add dep to domain %s volt=%ld\n",
				__func__, dep_info->name, dep_volt);
	return i;
}

/**
 * _dep_scan_domains() - Scan dependency domains for a device
 * @dev:	device requesting the scan
 * @vdd:	vdd_info corresponding to the device
 * @main_volt:	voltage to scan for
 *
 * Since each domain *may* have multiple dependent domains, we scan
 * through each of the dependent domains and invoke _dep_scan_table to
 * scan each table for dependent domain for dependency scaling.
 *
 * This assumes that the dependent domain information is NULL entry terminated.
 * Returns 0 if all went well.
 */
static int _dep_scan_domains(struct device *dev,
		struct omap_vdd_info *vdd, unsigned long main_volt)
{
	struct omap_vdd_dep_info *dep_info = vdd->dep_vdd_info;
	int ret = 0, r;

	if (!dep_info) {
		dev_dbg(dev, "%s: No dependent VDD\n", __func__);
		return 0;
	}

	/* First scan through the mydomain->dep_domain list */
	while (dep_info->nr_dep_entries) {
		r = _dep_scan_table(dev, dep_info, main_volt);
		/* Store last failed value */
		ret = (r) ? r : ret;
		dep_info++;
	}

	return ret;
}

/**
 * _dep_scale_domains() - Cause a scale of all dependent domains
 * @req_dev:	device requesting the scale
 * @req_vdd:	vdd_info corresponding to the requesting device.
 *
 * This walks through every dependent domain and triggers a scale
 * It is assumed that the corresponding scale handling for the
 * domain translates this to freq and voltage scale operations as
 * needed.
 *
 * Note: This is uses _dvfs_scale and one should be careful not to
 * create a circular depedency (e.g. vdd_mpu->vdd_core->vdd->mpu)
 * which can create deadlocks. No protection is provided to prevent
 * this condition and a tree organization is assumed.
 *
 * Returns 0 if all went fine.
 */
static int _dep_scale_domains(struct device *req_dev,
				struct omap_vdd_info *req_vdd)
{
	struct omap_vdd_dep_info *dep_info = req_vdd->dep_vdd_info;
	int ret = 0, r;

	if (!dep_info) {
		dev_dbg(req_dev, "%s: No dependent VDD\n", __func__);
		return 0;
	}

	/* First scan through the mydomain->dep_domain list */
	while (dep_info->nr_dep_entries) {
		struct voltagedomain *tvoltdm = dep_info->_dep_voltdm;

		r = 0;
		/* Scale it only if I have a voltdm mapped up for the dep */
		if (tvoltdm) {
			struct omap_vdd_dvfs_info *tdvfs_info;
			struct device *target_dev;
			tdvfs_info = _voltdm_to_dvfs_info(tvoltdm);
			if (!tdvfs_info) {
				dev_warn(req_dev, "%s: no dvfs_info\n",
						__func__);
				goto next;
			}
			target_dev = _dvfs_info_to_dev(tdvfs_info);
			if (!target_dev) {
				dev_warn(req_dev, "%s: no target_dev\n",
						__func__);
				goto next;
			}
			r = _dvfs_scale(req_dev, target_dev, tdvfs_info);
next:
			if (r)
				dev_err(req_dev, "%s: dvfs_scale to %s =%d\n",
					__func__, dev_name(target_dev), r);
		}
		/* Store last failed value */
		ret = (r) ? r : ret;
		dep_info++;
	}

	return ret;
}

/**
 * _dvfs_scale() : Scale the devices associated with a voltage domain
 * @req_dev:	Device requesting the scale
 * @target_dev:	Device requesting to be scaled
 * @tdvfs_info:	omap_vdd_dvfs_info pointer for the target domain
 *
 * This runs through the list of devices associated with the
 * voltage domain and scales the device rates to the one requested
 * by the user or those corresponding to the new voltage of the
 * voltage domain. Target voltage is the highest voltage in the vdd_user_list.
 *
 * Returns 0 on success else the error value.
 */
static int _dvfs_scale(struct device *req_dev, struct device *target_dev,
		struct omap_vdd_dvfs_info *tdvfs_info)
{
	unsigned long curr_volt, new_volt;
	int volt_scale_dir = DVFS_VOLT_SCALE_DOWN;
	struct omap_vdd_dev_list *temp_dev;
	struct plist_node *node;
	int ret = 0;
	struct voltagedomain *voltdm;
	struct omap_vdd_info *vdd;
	struct omap_volt_data *volt_data;

	voltdm = tdvfs_info->voltdm;
	if (IS_ERR_OR_NULL(voltdm)) {
		dev_err(target_dev, "%s: bad voltdm\n", __func__);
		return -EINVAL;
	}
	vdd = voltdm->vdd;

	/* Find the highest voltage being requested */
	node = plist_last(&tdvfs_info->vdd_user_list);
	new_volt = node->prio;

	volt_data = voltdm_get_voltage(voltdm);
	if (IS_ERR_OR_NULL(volt_data)) {
		pr_warning("%s: No voltage/domain?\n", __func__);
		return -ENODEV;
	}

	curr_volt = omap_vp_get_curr_volt(voltdm);
	if (!curr_volt)
		curr_volt = omap_get_operation_voltage(volt_data);

	/* Disable smartreflex module across voltage and frequency scaling */
	omap_sr_disable(voltdm);

	if (curr_volt == new_volt) {
		volt_scale_dir = DVFS_VOLT_SCALE_NONE;
	} else if (curr_volt < new_volt) {

		ret = _dep_scale_domains(target_dev, vdd);
		if (ret) {
			dev_err(target_dev,
				"%s: Error(%d)scale dependent with %ld volt\n",
				__func__, ret, new_volt);
			goto fail;
		}

		ret = voltdm_scale(voltdm,
			omap_voltage_get_voltdata(voltdm, new_volt));
		if (ret) {
			dev_err(target_dev,
				"%s: Unable to scale the %s to %ld volt\n",
				__func__, voltdm->name, new_volt);
			goto out;
		}
		volt_scale_dir = DVFS_VOLT_SCALE_UP;
	}

	/* Move all devices in list to the required frequencies */
	list_for_each_entry(temp_dev, &tdvfs_info->dev_list, node) {
		struct device *dev;
		struct opp *opp;
		unsigned long freq = 0;
		int r;

		dev = temp_dev->dev;
		if (!plist_head_empty(&temp_dev->freq_user_list)) {
			node = plist_last(&temp_dev->freq_user_list);
			freq = node->prio;
		} else {
			/*
			 * Is the dev of dep domain target_device?
			 * we'd probably have a voltage request without
			 * a frequency dependency, scale appropriate frequency
			 * if there are none pending
			 */
			if (target_dev == dev) {
				rcu_read_lock();
				opp = _volt_to_opp(dev, new_volt);
				if (!IS_ERR(opp))
					freq = opp_get_freq(opp);
				rcu_read_unlock();
			}
			if (!freq)
				continue;
		}

		if (freq == clk_get_rate(temp_dev->clk)) {
			dev_dbg(dev, "%s: Already at the requested"
				"rate %ld\n", __func__, freq);
			continue;
		}

		r = clk_set_rate(temp_dev->clk, freq);
		if (r < 0) {
			dev_err(dev, "%s: clk set rate frq=%ld failed(%d)\n",
				__func__, freq, r);
			ret = r;
		}
	}

	if (ret)
		goto fail;

	if (DVFS_VOLT_SCALE_DOWN == volt_scale_dir) {
		voltdm_scale(voltdm,
			omap_voltage_get_voltdata(voltdm, new_volt));
		_dep_scale_domains(target_dev, vdd);
	}

	/* All clear.. go out gracefully */
	goto out;

fail:
	pr_warning("%s: domain%s: No clean recovery available! could be bad!\n",
			__func__, voltdm->name);
out:
	/* Re-enable Smartreflex module */
	omap_sr_enable(voltdm);

	return ret;
}

/* Public functions */

/**
 * omap_device_scale() - Set a new rate at which the device is to operate
 * @req_dev:	pointer to the device requesting the scaling.
 * @target_dev:	pointer to the device that is to be scaled
 * @rate:	the rnew rate for the device.
 *
 * This API gets the device opp table associated with this device and
 * tries putting the device to the requested rate and the voltage domain
 * associated with the device to the voltage corresponding to the
 * requested rate. Since multiple devices can be assocciated with a
 * voltage domain this API finds out the possible voltage the
 * voltage domain can enter and then decides on the final device
 * rate.
 *
 * Return 0 on success else the error value
 */
int omap_device_scale(struct device *req_dev, struct device *target_dev,
			unsigned long rate)
{
	struct opp *opp;
	unsigned long volt, freq = rate;
	struct omap_vdd_dvfs_info *tdvfs_info;
	struct platform_device *p_dev;
	struct omap_device *od;
	int ret = 0;

	p_dev = container_of(target_dev, struct platform_device, dev);
	if (IS_ERR_OR_NULL(p_dev)) {
		pr_err("%s: pdev is null!\n", __func__);
		return -EINVAL;
	}

	od = to_omap_device(p_dev);
	if (IS_ERR_OR_NULL(od)) {
		pr_err("%s: od is null!\n", __func__);
		return -EINVAL;
	}

	if (!omap_pm_is_ready()) {
		dev_dbg(target_dev, "%s: pm is not ready yet\n", __func__);
		return -EBUSY;
	}

	/* Lock me to ensure cross domain scaling is secure */
	mutex_lock(&omap_dvfs_lock);

	rcu_read_lock();
	opp = opp_find_freq_ceil(target_dev, &freq);
	/* If we dont find a max, try a floor at least */
	if (IS_ERR(opp))
		opp = opp_find_freq_floor(target_dev, &freq);
	if (IS_ERR(opp)) {
		rcu_read_unlock();
		dev_err(target_dev, "%s: Unable to find OPP for freq%ld\n",
			__func__, rate);
		ret = -ENODEV;
		goto out;
	}
	volt = opp_get_voltage(opp);
	rcu_read_unlock();

	tdvfs_info = _dev_to_dvfs_info(target_dev);
	if (IS_ERR_OR_NULL(tdvfs_info)) {
		dev_err(target_dev, "%s: (req=%s) no vdd![f=%ld, v=%ld]\n",
			__func__, dev_name(req_dev), freq, volt);
		ret = -ENODEV;
		goto out;
	}

	ret = _add_freq_request(tdvfs_info, req_dev, target_dev, freq);
	if (ret) {
		dev_err(target_dev, "%s: freqadd(%s) failed %d[f=%ld, v=%ld]\n",
			__func__, dev_name(req_dev), ret, freq, volt);
		goto out;
	}

	ret = _add_vdd_user(tdvfs_info, req_dev, volt);
	if (ret) {
		dev_err(target_dev, "%s: vddadd(%s) failed %d[f=%ld, v=%ld]\n",
			__func__, dev_name(req_dev), ret, freq, volt);
		_remove_freq_request(tdvfs_info, req_dev,
			target_dev);
		goto out;
	}

	/* Check for any dep domains and add the user request */
	ret = _dep_scan_domains(target_dev, tdvfs_info->voltdm->vdd, volt);
	if (ret) {
		dev_err(target_dev,
			"%s: Error in scan domains for vdd_%s\n",
			__func__, tdvfs_info->voltdm->name);
		goto out;
	}

	/* Do the actual scaling */
	ret = _dvfs_scale(req_dev, target_dev, tdvfs_info);
	if (ret) {
		dev_err(target_dev, "%s: scale by %s failed %d[f=%ld, v=%ld]\n",
			__func__, dev_name(req_dev), ret, freq, volt);
		_remove_freq_request(tdvfs_info, req_dev,
			target_dev);
		_remove_vdd_user(tdvfs_info, target_dev);
		/* Fall through */
	}
	/* Fall through */
out:
	mutex_unlock(&omap_dvfs_lock);
	return ret;
}
EXPORT_SYMBOL(omap_device_scale);

#ifdef CONFIG_PM_DEBUG
static int dvfs_dump_vdd(struct seq_file *sf, void *unused)
{
	int k;
	struct omap_vdd_dvfs_info *dvfs_info;
	struct omap_vdd_dev_list *tdev;
	struct omap_dev_user_list *duser;
	struct omap_vdd_user_list *vuser;
	struct omap_vdd_info *vdd;
	struct omap_vdd_dep_info *dep_info;
	struct voltagedomain *voltdm;
	struct omap_volt_data *volt_data;
	int anyreq;
	int anyreq2;

	dvfs_info = (struct omap_vdd_dvfs_info *)sf->private;
	if (IS_ERR_OR_NULL(dvfs_info)) {
		pr_err("%s: NO DVFS?\n", __func__);
		return -EINVAL;
	}

	voltdm = dvfs_info->voltdm;
	if (IS_ERR_OR_NULL(voltdm)) {
		pr_err("%s: NO voltdm?\n", __func__);
		return -EINVAL;
	}

	vdd = voltdm->vdd;
	if (IS_ERR_OR_NULL(vdd)) {
		pr_err("%s: NO vdd data?\n", __func__);
		return -EINVAL;
	}

	seq_printf(sf, "vdd_%s\n", voltdm->name);
	mutex_lock(&omap_dvfs_lock);
	spin_lock(&dvfs_info->user_lock);

	seq_printf(sf, "|- voltage requests\n|  |\n");
	anyreq = 0;
	plist_for_each_entry(vuser, &dvfs_info->vdd_user_list, node) {
		seq_printf(sf, "|  |-%d: %s:%s\n",
			   vuser->node.prio,
			   dev_driver_string(vuser->dev), dev_name(vuser->dev));
		anyreq = 1;
	}

	spin_unlock(&dvfs_info->user_lock);

	if (!anyreq)
		seq_printf(sf, "|  `-none\n");
	else
		seq_printf(sf, "|  X\n");
	seq_printf(sf, "|\n");

	seq_printf(sf, "|- frequency requests\n|  |\n");
	anyreq2 = 0;
	list_for_each_entry(tdev, &dvfs_info->dev_list, node) {
		anyreq = 0;
		seq_printf(sf, "|  |- %s:%s\n",
			   dev_driver_string(tdev->dev), dev_name(tdev->dev));
		spin_lock(&tdev->user_lock);
		plist_for_each_entry(duser, &tdev->freq_user_list, node) {
			seq_printf(sf, "|  |  |-%d: %s:%s\n",
				   duser->node.prio,
				   dev_driver_string(duser->dev),
				   dev_name(duser->dev));
			anyreq = 1;
		}

		spin_unlock(&tdev->user_lock);

		if (!anyreq)
			seq_printf(sf, "|  |  `-none\n");
		else
			seq_printf(sf, "|  |  X\n");
		anyreq2 = 1;
	}
	if (!anyreq2)
		seq_printf(sf, "|  `-none\n");
	else
		seq_printf(sf, "|  X\n");

	volt_data = vdd->volt_data;
	seq_printf(sf, "|- Supported voltages\n|  |\n");
	anyreq = 0;
	while (volt_data && volt_data->volt_nominal) {
		seq_printf(sf, "|  |-%d\n", volt_data->volt_nominal);
		anyreq = 1;
		volt_data++;
	}
	if (!anyreq)
		seq_printf(sf, "|  `-none\n");
	else
		seq_printf(sf, "|  X\n");

	dep_info = vdd->dep_vdd_info;
	seq_printf(sf, "`- voltage dependencies\n   |\n");
	anyreq = 0;
	while (dep_info && dep_info->nr_dep_entries) {
		struct omap_vdd_dep_volt *dep_table = dep_info->dep_table;

		seq_printf(sf, "   |-on vdd_%s\n", dep_info->name);

		for (k = 0; k < dep_info->nr_dep_entries; k++) {
			seq_printf(sf, "   |  |- %d => %d\n",
				   dep_table[k].main_vdd_volt,
				   dep_table[k].dep_vdd_volt);
		}

		anyreq = 1;
		dep_info++;
	}

	if (!anyreq)
		seq_printf(sf, "   `- none\n");
	else
		seq_printf(sf, "   X  X\n");

	mutex_unlock(&omap_dvfs_lock);
	return 0;
}

static int dvfs_dbg_open(struct inode *inode, struct file *file)
{
	return single_open(file, dvfs_dump_vdd, inode->i_private);
}

static struct file_operations debugdvfs_fops = {
	.open = dvfs_dbg_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static struct dentry __initdata *dvfsdebugfs_dir;

static void __init dvfs_dbg_init(struct omap_vdd_dvfs_info *dvfs_info)
{
	struct dentry *ddir;

	/* create a base dir */
	if (!dvfsdebugfs_dir)
		dvfsdebugfs_dir = debugfs_create_dir("dvfs", NULL);
	if (IS_ERR_OR_NULL(dvfsdebugfs_dir)) {
		WARN_ONCE("%s: Unable to create base DVFS dir\n", __func__);
		return;
	}

	if (IS_ERR_OR_NULL(dvfs_info->voltdm)) {
		pr_err("%s: no voltdm\n", __func__);
		return;
	}

	ddir = debugfs_create_dir(dvfs_info->voltdm->name, dvfsdebugfs_dir);
	if (IS_ERR_OR_NULL(ddir)) {
		pr_warning("%s: unable to create subdir %s\n", __func__,
			   dvfs_info->voltdm->name);
		return;
	}

	debugfs_create_file("info", S_IRUGO, ddir,
			    (void *)dvfs_info, &debugdvfs_fops);
}
#else				/* CONFIG_PM_DEBUG */
static inline void dvfs_dbg_init(struct omap_vdd_dvfs_info *dvfs_info)
{
	return;
}
#endif				/* CONFIG_PM_DEBUG */

/**
 * omap_dvfs_register_device - Add a parent device into dvfs managed list
 * @dev:		Device to be added
 * @voltdm_name:	Name of the voltage domain for the device
 * @clk_name:		Name of the clock for the device
 *
 * This function adds a given device into user_list of corresponding
 * vdd's omap_vdd_dvfs_info strucure. This list is traversed to scale
 * frequencies of all the devices on a given vdd.
 *
 * Returns 0 on success.
 */
int __init omap_dvfs_register_device(struct device *dev, char *voltdm_name,
		char *clk_name)
{
	struct omap_vdd_dev_list *temp_dev;
	struct omap_vdd_dvfs_info *dvfs_info;
	struct clk *clk = NULL;
	struct voltagedomain *voltdm;
	int ret = 0;

	if (!voltdm_name) {
		dev_err(dev, "%s: Bad voltdm name!\n", __func__);
		return -EINVAL;
	}
	if (!clk_name) {
		dev_err(dev, "%s: Bad clk name!\n", __func__);
		return -EINVAL;
	}

	/* Lock me to secure structure changes */
	mutex_lock(&omap_dvfs_lock);

	voltdm = voltdm_lookup(voltdm_name);
	if (!voltdm) {
		dev_warn(dev, "%s: unable to find voltdm %s!\n",
			__func__, voltdm_name);
		ret = -EINVAL;
		goto out;
	}
	dvfs_info = _voltdm_to_dvfs_info(voltdm);
	if (!dvfs_info) {
		dvfs_info = kzalloc(sizeof(struct omap_vdd_dvfs_info),
				GFP_KERNEL);
		if (!dvfs_info) {
			dev_warn(dev, "%s: unable to alloc memory!\n",
				__func__);
			ret = -ENOMEM;
			goto out;
		}
		dvfs_info->voltdm = voltdm;

		/* Init the plist */
		spin_lock_init(&dvfs_info->user_lock);
		plist_head_init(&dvfs_info->vdd_user_list);

		/* Init the device list */
		INIT_LIST_HEAD(&dvfs_info->dev_list);

		list_add(&dvfs_info->node, &omap_dvfs_info_list);

		dvfs_dbg_init(dvfs_info);
	}

	/* If device already added, we dont need to do more.. */
	list_for_each_entry(temp_dev, &dvfs_info->dev_list, node) {
		if (temp_dev->dev == dev)
			goto out;
	}

	temp_dev = kzalloc(sizeof(struct omap_vdd_dev_list), GFP_KERNEL);
	if (!temp_dev) {
		dev_err(dev, "%s: Unable to creat a new device for vdd_%s\n",
			__func__, dvfs_info->voltdm->name);
		ret = -ENOMEM;
		goto out;
	}

	clk = clk_get(dev, clk_name);
	if (IS_ERR_OR_NULL(clk)) {
		dev_warn(dev, "%s: Bad clk pointer!\n", __func__);
		kfree(temp_dev);
		ret = -EINVAL;
		goto out;
	}

	/* Initialize priority ordered list */
	spin_lock_init(&temp_dev->user_lock);
	plist_head_init(&temp_dev->freq_user_list);

	temp_dev->dev = dev;
	temp_dev->clk = clk;
	list_add_tail(&temp_dev->node, &dvfs_info->dev_list);

	/* Fall through */
out:
	mutex_unlock(&omap_dvfs_lock);
	return ret;
}