aboutsummaryrefslogtreecommitdiff
path: root/kernel/sched/fair.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/sched/fair.c')
-rw-r--r--kernel/sched/fair.c143
1 files changed, 143 insertions, 0 deletions
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index 45691a2b7861..91bbbe4938ec 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -4318,6 +4318,149 @@ static inline bool energy_aware(void)
return sched_feat(ENERGY_AWARE);
}
+/*
+ * cpu_norm_usage() returns the cpu usage relative to it's current capacity,
+ * i.e. it's busy ratio, in the range [0..SCHED_LOAD_SCALE] which is useful for
+ * energy calculations. Using the scale-invariant usage returned by
+ * get_cpu_usage() and approximating scale-invariant usage by:
+ *
+ * usage ~ (curr_freq/max_freq)*1024 * capacity_orig/1024 * running_time/time
+ *
+ * the normalized usage can be found using capacity_curr.
+ *
+ * capacity_curr = capacity_orig * curr_freq/max_freq
+ *
+ * norm_usage = running_time/time ~ usage/capacity_curr
+ */
+static inline unsigned long cpu_norm_usage(int cpu)
+{
+ unsigned long capacity_curr = capacity_curr_of(cpu);
+
+ return (get_cpu_usage(cpu) << SCHED_CAPACITY_SHIFT)/capacity_curr;
+}
+
+static unsigned group_max_usage(struct sched_group *sg)
+{
+ int i;
+ int max_usage = 0;
+
+ for_each_cpu(i, sched_group_cpus(sg))
+ max_usage = max(max_usage, get_cpu_usage(i));
+
+ return max_usage;
+}
+
+/*
+ * group_norm_usage() returns the approximated group usage relative to it's
+ * current capacity (busy ratio) in the range [0..SCHED_LOAD_SCALE] for use in
+ * energy calculations. Since task executions may or may not overlap in time in
+ * the group the true normalized usage is between max(cpu_norm_usage(i)) and
+ * sum(cpu_norm_usage(i)) when iterating over all cpus in the group, i. The
+ * latter is used as the estimate as it leads to a more pessimistic energy
+ * estimate (more busy).
+ */
+static unsigned group_norm_usage(struct sched_group *sg)
+{
+ int i;
+ unsigned long usage_sum = 0;
+
+ for_each_cpu(i, sched_group_cpus(sg))
+ usage_sum += cpu_norm_usage(i);
+
+ if (usage_sum > SCHED_CAPACITY_SCALE)
+ return SCHED_CAPACITY_SCALE;
+ return usage_sum;
+}
+
+static int find_new_capacity(struct sched_group *sg,
+ struct sched_group_energy *sge)
+{
+ int idx;
+ unsigned long util = group_max_usage(sg);
+
+ for (idx = 0; idx < sge->nr_cap_states; idx++) {
+ if (sge->cap_states[idx].cap >= util)
+ return idx;
+ }
+
+ return idx;
+}
+
+/*
+ * sched_group_energy(): Returns absolute energy consumption of cpus belonging
+ * to the sched_group including shared resources shared only by members of the
+ * group. Iterates over all cpus in the hierarchy below the sched_group starting
+ * from the bottom working it's way up before going to the next cpu until all
+ * cpus are covered at all levels. The current implementation is likely to
+ * gather the same usage statistics multiple times. This can probably be done in
+ * a faster but more complex way.
+ */
+static unsigned int sched_group_energy(struct sched_group *sg_top)
+{
+ struct sched_domain *sd;
+ int cpu, total_energy = 0;
+ struct cpumask visit_cpus;
+ struct sched_group *sg;
+
+ WARN_ON(!sg_top->sge);
+
+ cpumask_copy(&visit_cpus, sched_group_cpus(sg_top));
+
+ while (!cpumask_empty(&visit_cpus)) {
+ struct sched_group *sg_shared_cap = NULL;
+
+ cpu = cpumask_first(&visit_cpus);
+
+ /*
+ * Is the group utilization affected by cpus outside this
+ * sched_group?
+ */
+ sd = highest_flag_domain(cpu, SD_SHARE_CAP_STATES);
+ if (sd && sd->parent)
+ sg_shared_cap = sd->parent->groups;
+
+ for_each_domain(cpu, sd) {
+ sg = sd->groups;
+
+ /* Has this sched_domain already been visited? */
+ if (sd->child && cpumask_first(sched_group_cpus(sg)) != cpu)
+ break;
+
+ do {
+ struct sched_group *sg_cap_util;
+ unsigned group_util;
+ int sg_busy_energy, sg_idle_energy;
+ int cap_idx;
+
+ if (sg_shared_cap && sg_shared_cap->group_weight >= sg->group_weight)
+ sg_cap_util = sg_shared_cap;
+ else
+ sg_cap_util = sg;
+
+ cap_idx = find_new_capacity(sg_cap_util, sg->sge);
+ group_util = group_norm_usage(sg);
+ sg_busy_energy = (group_util * sg->sge->cap_states[cap_idx].power)
+ >> SCHED_CAPACITY_SHIFT;
+ sg_idle_energy = ((SCHED_LOAD_SCALE-group_util) * sg->sge->idle_states[0].power)
+ >> SCHED_CAPACITY_SHIFT;
+
+ total_energy += sg_busy_energy + sg_idle_energy;
+
+ if (!sd->child)
+ cpumask_xor(&visit_cpus, &visit_cpus, sched_group_cpus(sg));
+
+ if (cpumask_equal(sched_group_cpus(sg), sched_group_cpus(sg_top)))
+ goto next_cpu;
+
+ } while (sg = sg->next, sg != sd->groups);
+ }
+next_cpu:
+ continue;
+ }
+
+ return total_energy;
+}
+
static int wake_wide(struct task_struct *p)
{
int factor = this_cpu_read(sd_llc_size);